KAIST

Architectures

Advanced ﬁ INIET - 'nternet
NetworkingL.ab ' E Network

Memory-safe Network Services Through A
Userspace Networking Switch

Kai Luke
Master Thesis
Advisor: Prof. Sue Moon
Co-Advisor: Prof. Anja Feldmann
Dual-Degree Program KAIST/TU Berlin

1/29

Motivation

Security of network services harmed by remote code execution
vulnerabilities

Memory-corruption bugs are the root cause for remote code
execution

Applications already use memory-safe programming languages
against memory corruption in userspace

But TCP/IP stack in kernel remains vulnerable
Idea: Move TCP/IP into memory-safe userspace process

Userspace HTTP/TLS
Application Layer in Memory-safe
Language
Kernel Transport Layer
TCP/IP
Internet Layer in C
Link Layer

2/29

High-impact Remote Vulnerabilities in
Linux

CVE with CVSS
score > 9/10

CVE-2018-5703

Description

in-kernel TLS for IPv6 packets has an out-of-
bounds write

flow dissector has uninitialized values
CVE-2017-13715 exploitable by MPLS packets

CVE-2017-18017| TCP MSS matching in iptables has use-after-free

CVE-2016-10229 UDP packet recv with MSG_PEEK has race
CVE-2016-9555 SCTP out-of-bounds
CVE-2016-7117 recvmmsg use-after-free

Not just a problem in Linux:
Apple CVE-2018-4407: ICMP packet may cause out-of-bounds write

3/29

TCP/IP In Userspace

Implemented as in-app network stack

Requires access to full Ethernet frames

Can use kernel bypass and userspace NIC drivers
Has either exclusive NIC access

o Dedicated NIC - separate MAC and IP

Or NIC access shared with kernel/userspace network stacks
through switching

o L2 - separate MAC and IP address

o L3 — separate IP address

o L4 - same |IP address but separate TCP/UDP ports
m Appropriate switching layer for OS processes

4/29

Switching Packets for Kernel and
Userspace Network Stacks

 Needed because not all applications can be changed to use a

userspace network stack

» Keeps kernel network stack active for administrative tasks,
updates, and time synchronization

* Allows to first focus on memory safety for publicly available

services
Legacy Application
Application
S N P T e N
_Network Stack | } e

NIC

5/29

Threat Model

 Assume attacker has knowledge about a vulnerability in our
kernel network stack

o There are ~2 high-impact remote vulnerabilities in the Linux
network stack per year

o Updates may be available or not (third-party, outdated
version, custom kernel, zero-day exploit)

 Assume that the attacker uses an Internet endpoint device
o Can craft malicious IP headers and L4 headers
o Cannot spoof its source IP address
o Cannot monitor unrelated packets from the remote host

6/29

Requirements for the Deployment of a
Memory-safe TCP/IP Service on Linux

e Allow only memory-safe TCP/IP processing for untrusted packets
o E.qg., L4 switch, firewall, packet monitor

e Allow TCP/IP processing without memory safety only for trusted
packets

o E.qg., packets for kernel network stack must be filtered
o Trust can be defined as policy or heuristic

- L2 handling and NIC drivers can be trusted code

7/29

Problem Statement for Memory-safe
TCP/IP In Userspace

 Provide NIC access to kernel network stack

o Needs firewalling of kernel, e.g., by only trusting response
packets for outgoing connections

e Share one IP address with the kernel network stack

o Needs a memory-safe L4 switch, existing L4 switches are
not memory-safe

* Provide easy usage for existing applications
o Needs userspace networking library which
m Does not change API or connection behavior

m Integrates with kernel loopback interface, e.qg., for local
DB connections

8/29

Existing Solutions for Memory-safe TCP/IP

Services

Memory-safe Operating Systems

Name Architecture Language
MirageOS |Unikernel library OS OCaml|
HalVM Unikernel library OS Haskell
RedoxOS | Microkernel OS Rust/any

e Virtual interface connected with L2 bridge

— different IPs

 Not compatible with Linux but run as VMs on Linux hypervisor
— unnecessary detour for memory-safe TCP/IP

9/29

Existing Solutions for Memory-safe TCP/IP
Services

Userspace Network Stacks

Network Integration with

Si:eacko Language Ioopbagck interface

mirage-tcpip |OCaml no

HaNS Haskell no
Rust

smoltcp (single thread with non- no
blocking 10)

 TAP interface connected with L2 bridge
- different IPs, need L4 switch for userspace network stack

 Keep benefit of large Linux ecosystem, multiprocess support

10/29

Existing L4 Switches for Userspace

Network Stacks

e Let userspace network stacks register TCP/UDP ports to receive
 Forward all other packets to kernel

Memory-

Protects

Name safe Kernel Note

) Botackfor no no old netmap version
VALE

swarm no no requires different

kernel IP with VALE

NIC hardware

TAPM yes no matching through

gueues

* Not sufficient for memory-safe TCP/IP services

11/29

Design of usnetd: Memory-safe L4 Switch
for Userspace Network Stacks

e Shares NIC for userspace network stacks and kernel network
stack

e Lets network stacks register which ports to receive
* Firewalls the kernel network stack

o Allows only outgoing connections, trusts response packets
and ARP packets

ErUserspace
: Application
Control

Messages| .k

e mmm > ! 1]
: Legacy usnetd + Userspace 1]
! cat] Switch ' Network Stack !|!
! Appllcatlon ¢ < Packets Tl -----------------------

Kernel NIC

12/29

e Exposes control socket for endpoint setup and port registration

e Automatically forwards response packets without need for port
registration

* Provides uniform interface for multiple kernel bypass
frameworks as NIC backend

o DPDK, netmap, macvtap, AF_XDP

13/29

Prototype for usnetd on netmap

e Uses netmap pipes as zero-copy IPC channel for packets
e Supports Unix domain sockets as simpler IPC channel

 Uses a single thread for the event loop

]
i Userspace

E usnetd
1| Switch

| Control Socket k Application

A

In-App Network Stack E

Switch . [| Control Messages:
and Userspace y| - Request Endpoint
Firewall J=>INetwork Stack | || . xiq Packet Match
Logic Packet IPC |\ || “A99}
E | NIC Rings || Kernel Host Rings | \J Switch IPC_
! Iy (e.g., Netmap Pipe

was handed over)

Kernel

Socket API
Network Stack

Netmap
Driver

NIC

14/29

Design of usnet sockets: Rust userspace
networking library

 Uses an in-app network stack
* Provides same socket types as the standard library
Integrates with the kernel loopback interface

Requires source code changes for imports/dependencies
Configurable at runtime

o NIC access: usnetd, netmap, macvtap

o |P configuration: passthrough, static, DHCP

15/29

Prototype for usnet sockets on smoltcp

* Provides TcpStream, TcpListener types

o Multithread-capable, blocking API
e Uses background thread to wake up blocked socket 10
e Currently relies on one mutex for all smoltcp sockets

Userspace
Processes

Control
Messages .-

L d

>4

L4
’,

‘I

usnetd
Switch

Thread

TcpStream

Thread

TcpStream

Kernel

16/29

Performance Evaluation

Experiment Setup

e Consists of directly connected equal machines

o Two Intel Xeon X5550 servers at 2.6 GHz

o Two Intel Core i5-4690 desktops at 3.9 GHz
e Uses Intel 10G NICs with netmap patches for ixgbe driver
* Always uses zero-copy 10

17/29

Packet Matching Speed of usnetd

Measured with netmap pkt-gen connected to usnetd via netmap
pipe, sending minimal sized UDP packets

2.6 GHz setup cannot achieve 14 pkt-gen RX on

line rate for small/middle- 13] m netmap (without usnetd)
sized packets 12
3.9 GHz setup cannot achieve '
line rate for small packets 12"
Note: Not linear due to 8.
degraded netmap g ;)
performance on 2.6 GHz = 6
5.
4.
34
2.
1
oL BEET 1 B

2.6 GHz 3.9 GHz

18/29

TCP Goodput of usnet sockets on usnetd

« Measured payload delivery rate, sensitive to packet drops

* Line-rate for large packets with 10,000- : Socket AP
3.9 GHz setup 0 000 m usnet_sockets
« Degraded performance with 2.6 |
GHz setup 5.0004
o Will look in detail what the 7,000
bottleneck is by measuring 6.000.
overheads 0
£ 5,000-
 Linux network stack has always =
line rate (multicore) 4,0001
3,000+
2,000+
1,000- I
0

L =-—— @ -

usnetd 2.6 GHz 3.9 GHz

19/29

TCP Goodput: Analysis of Overhead

* Take usnetd out

o NIC access directly through netmap without usnetd
* Take locking and synchronization in usnet _sockets out

o No background thread, socket calls do all network 10
 Take blocking API of usnet sockets out

o Directly use smoltcp

20/29

MBit/s

10,000+

9,000+

8,000-

7,000+

6,000-

5,000-

4,000-

3,000+

2,000+

1,000+

O_ﬁﬁﬁ_

usnetd 2.6 GHz

1 Socket API

W smoltcp

W usnet_sockets

B usnet_sockets (no background thread)

e ——

netmap 2.6 GHz (without usnetd)

21/29

 No improvement for usnet_sockets on netmap

o Multithread synchronization is the main limiting factor
 Not using a background thread is faster

o Here usnetd limits performance

* Blocking logic has some impact compared to directly using
smoltcp

o But even without usnetd and blocking APl goodput is not line
rate -» Needs smoltcp improvements

22/29

HTTP Request Completion

Find out limitations of global mutex for multithread scalability

Measured with Apache Benchmark (ab) as client on Linux
network stack

Client uses 32 parallel short connections, not sensitive to
congestion control

Server spawns thread per connection
Compared usnet sockets to Linux network stack

23/29

e Scalability impacted by
global mutex and inefficient
wakeup with lock
competition

 Note: Not linear due to
degraded netmap
performance and more
cores on 2.6 GHz

35,000+

30,000-

25,000-

20,000-

Req/s

15,000-

10,000+

5,000+

2.6 GHz

3.9 GHz

Network Stack
B Linux
m usnet

24/29

Required Source Code Changes

| changed two public Rust libraries to have build flags for using
usnet sockets

tiny-http is a HTTP implementation on top of the Rust standard
library sockets

o Needed few-lines patch to alter the import statements
rouille is a web framework using tiny-http

o Needed build metadata patch to specify build flag for tiny-
http

Port key libraries that use Rust standard library sockets
o Then no change to applications needed

25/29

Results

e No TCP/IP handling in trusted code base (TCB)

o TCB consists of NIC driver, netmap, netmap code in Rust,
syscalls and data structures of libraries, Rust compiler

 Implementation lacks features in these areas:
o usnetd: multicast, broadcast, IPv6, IP fragmentation

o ushet sockets: DNS, IPv6, timeout, UDP, non-blocking 10,
epoll wrapper, routing for multiple NICs

o smoltcp: congestion control, selective/delayed ACKs, IP
fragmentation, MTU discovery, DHCP

26/29

Discussion

smoltcp: packet loss impacts goodput, needs more TCP features
usnetd: multi-core scalability needed for line rate
usnet sockets:

o Needs fine-grained locking and notification for multi-thread
usage

o Needs also epoll syscall wrappers for file descriptors to
support mio or Tokio

Only addressed memory corruption, not implementation
correctness

27/29

Conclusion

usnhetd switch for memory-safe userspace network stacks

o Shares NIC and IP between kernel and userspace network
stacks

o Protects the kernel network stack
ushet_sockets library for Rust

o Provides memory-safe TCP/IP without changing application
logic

o Integrates well with the rest of the system through loopback
interface

o Demonstrated ~10 GBit/s TCP goodput

Together they provide memory-safe TCP/IP for Rust on Linux
without changing the application logic

More optimizations and features needed for parity with Linux
network stack

28/29

Future Work

APl completeness
Macvtap, DPDK, and AF_XDP backends for usnetd
Programmable switches as alternative to usnetd or as backend?

o VALE-bpf, AF_XDP, PFQ: need bytecode/script for switching
and firewall logic

Provide libc-compatible LD _PRELOAD wrapper for language
agnostic memory-safe network stack

29/29

	Memory-safe Network Services Through A Userspace Networking Switch
	Motivation
	High-impact Remote Vulnerabilities in Linux
	TCP/IP in Userspace
	Switching Packets for Kernel and Userspace Network Stacks
	Threat Model
	Requirements for the Deployment of a Memory-safe TCP/IP Service on Linux
	Problem Statement for Memory-safe TCP/IP in Userspace
	Existing Solutions for Memory-safe TCP/IP Services
	Existing Solutions for Memory-safe TCP/IP Services
	Existing L4 Switches for Userspace Network Stacks
	Design of usnetd: Memory-safe L4 Switch for Userspace Network Stacks
	Prototype for usnetd on netmap
	Design of usnet_sockets: Rust userspace networking library
	Prototype for usnet_sockets on smoltcp
	Performance Evaluation
	Packet Matching Speed of usnetd
	TCP Goodput of usnet_sockets on usnetd
	TCP Goodput: Analysis of Overhead
	HTTP Request Completion
	Required Source Code Changes
	Results
	Discussion
	Conclusion
	Future Work

