
Memory-safe Network Services Through A
Userspace Networking Switch

Kai Lüke
Master Thesis

Advisor: Prof. Sue Moon
Co-Advisor: Prof. Anja Feldmann

Dual-Degree Program KAIST/TU Berlin

Internet
Network
Architectures

1/29

Motivation

• Security of network services harmed by remote code execution
vulnerabilities

• Memory-corruption bugs are the root cause for remote code
execution

• Applications already use memory-safe programming languages
against memory corruption in userspace

• But TCP/IP stack in kernel remains vulnerable

• Idea: Move TCP/IP into memory-safe userspace process

2/29

High-impact Remote Vulnerabilities in
Linux

CVE with CVSS
score > 9/10

Description

CVE-2018-5703
in-kernel TLS for IPv6 packets has an out-of-

bounds write

CVE-2017-13715
flow dissector has uninitialized values

exploitable by MPLS packets
CVE-2017-18017 TCP MSS matching in iptables has use-after-free
CVE-2016-10229 UDP packet recv with MSG_PEEK has race
CVE-2016-9555 SCTP out-of-bounds
CVE-2016-7117 recvmmsg use-after-free

Not just a problem in Linux:
Apple CVE-2018-4407: ICMP packet may cause out-of-bounds write

3/29

TCP/IP in Userspace

• Implemented as in-app network stack

• Requires access to full Ethernet frames

• Can use kernel bypass and userspace NIC drivers

• Has either exclusive NIC access

◦ Dedicated NIC → separate MAC and IP

• Or NIC access shared with kernel/userspace network stacks
through switching

◦ L2 → separate MAC and IP address

◦ L3 → separate IP address

◦ L4 → same IP address but separate TCP/UDP ports

▪ Appropriate switching layer for OS processes

4/29

Switching Packets for Kernel and
Userspace Network Stacks

• Needed because not all applications can be changed to use a
userspace network stack

• Keeps kernel network stack active for administrative tasks,
updates, and time synchronization

• Allows to first focus on memory safety for publicly available
services

5/29

Threat Model

• Assume attacker has knowledge about a vulnerability in our
kernel network stack

◦ There are ~2 high-impact remote vulnerabilities in the Linux
network stack per year

◦ Updates may be available or not (third-party, outdated
version, custom kernel, zero-day exploit)

• Assume that the attacker uses an Internet endpoint device

◦ Can craft malicious IP headers and L4 headers

◦ Cannot spoof its source IP address

◦ Cannot monitor unrelated packets from the remote host

6/29

Requirements for the Deployment of a
Memory-safe TCP/IP Service on Linux

• Allow only memory-safe TCP/IP processing for untrusted packets

◦ E.g., L4 switch, firewall, packet monitor

• Allow TCP/IP processing without memory safety only for trusted
packets

◦ E.g., packets for kernel network stack must be filtered

◦ Trust can be defined as policy or heuristic

→ L2 handling and NIC drivers can be trusted code

7/29

Problem Statement for Memory-safe
TCP/IP in Userspace

• Provide NIC access to kernel network stack

◦ Needs firewalling of kernel, e.g., by only trusting response
packets for outgoing connections

• Share one IP address with the kernel network stack

◦ Needs a memory-safe L4 switch, existing L4 switches are
not memory-safe

• Provide easy usage for existing applications

◦ Needs userspace networking library which

▪ Does not change API or connection behavior

▪ Integrates with kernel loopback interface, e.g., for local
DB connections

8/29

Existing Solutions for Memory-safe TCP/IP
Services

Memory-safe Operating Systems

Name Architecture Language
MirageOS Unikernel library OS OCaml
HaLVM Unikernel library OS Haskell
RedoxOS Microkernel OS Rust/any

• Virtual interface connected with L2 bridge
→ different IPs

• Not compatible with Linux but run as VMs on Linux hypervisor
→ unnecessary detour for memory-safe TCP/IP

9/29

Existing Solutions for Memory-safe TCP/IP
Services

Userspace Network Stacks

Network
Stack

Language
Integration with

loopback interface
mirage-tcpip OCaml no
HaNS Haskell no

smoltcp
Rust
(single thread with non-
blocking IO)

no

• TAP interface connected with L2 bridge
→ different IPs, need L4 switch for userspace network stack

• Keep benefit of large Linux ecosystem, multiprocess support

10/29

Existing L4 Switches for Userspace
Network Stacks

• Let userspace network stacks register TCP/UDP ports to receive

• Forward all other packets to kernel

Name
Memory-
safe

Protects
Kernel

Note

MultiStack for
VALE

no no old netmap version

swarm no no
requires different

kernel IP with VALE

TAPM yes no
NIC hardware

matching through
queues

• Not sufficient for memory-safe TCP/IP services

11/29

Design of usnetd: Memory-safe L4 Switch
for Userspace Network Stacks

• Shares NIC for userspace network stacks and kernel network
stack

• Lets network stacks register which ports to receive

• Firewalls the kernel network stack

◦ Allows only outgoing connections, trusts response packets
and ARP packets

12/29

• Exposes control socket for endpoint setup and port registration

• Automatically forwards response packets without need for port
registration

• Provides uniform interface for multiple kernel bypass
frameworks as NIC backend

◦ DPDK, netmap, macvtap, AF_XDP

13/29

Prototype for usnetd on netmap

• Uses netmap pipes as zero-copy IPC channel for packets

• Supports Unix domain sockets as simpler IPC channel

• Uses a single thread for the event loop

14/29

Design of usnet_sockets: Rust userspace
networking library

• Uses an in-app network stack

• Provides same socket types as the standard library

• Integrates with the kernel loopback interface

• Requires source code changes for imports/dependencies

• Configurable at runtime

◦ NIC access: usnetd, netmap, macvtap

◦ IP configuration: passthrough, static, DHCP

15/29

Prototype for usnet_sockets on smoltcp

• Provides TcpStream, TcpListener types

◦ Multithread-capable, blocking API

• Uses background thread to wake up blocked socket IO

• Currently relies on one mutex for all smoltcp sockets

16/29

Performance Evaluation

Experiment Setup

• Consists of directly connected equal machines

◦ Two Intel Xeon X5550 servers at 2.6 GHz

◦ Two Intel Core i5-4690 desktops at 3.9 GHz

• Uses Intel 10G NICs with netmap patches for ixgbe driver

• Always uses zero-copy IO

17/29

Packet Matching Speed of usnetd

• Measured with netmap pkt-gen connected to usnetd via netmap
pipe, sending minimal sized UDP packets

• 2.6 GHz setup cannot achieve
line rate for small/middle-
sized packets

• 3.9 GHz setup cannot achieve
line rate for small packets

• Note: Not linear due to
degraded netmap
performance on 2.6 GHz

18/29

TCP Goodput of usnet_sockets on usnetd

• Measured payload delivery rate, sensitive to packet drops

• Line-rate for large packets with
3.9 GHz setup

• Degraded performance with 2.6
GHz setup

◦ Will look in detail what the
bottleneck is by measuring
overheads

• Linux network stack has always
line rate (multicore)

19/29

TCP Goodput: Analysis of Overhead

• Take usnetd out

◦ NIC access directly through netmap without usnetd

• Take locking and synchronization in usnet_sockets out

◦ No background thread, socket calls do all network IO

• Take blocking API of usnet_sockets out

◦ Directly use smoltcp

20/29

21/29

• No improvement for usnet_sockets on netmap

◦ Multithread synchronization is the main limiting factor

• Not using a background thread is faster

◦ Here usnetd limits performance

• Blocking logic has some impact compared to directly using
smoltcp

◦ But even without usnetd and blocking API goodput is not line
rate → Needs smoltcp improvements

22/29

HTTP Request Completion

• Find out limitations of global mutex for multithread scalability

• Measured with Apache Benchmark (ab) as client on Linux
network stack

• Client uses 32 parallel short connections, not sensitive to
congestion control

• Server spawns thread per connection

• Compared usnet_sockets to Linux network stack

23/29

• Scalability impacted by
global mutex and inefficient
wakeup with lock
competition

• Note: Not linear due to
degraded netmap
performance and more
cores on 2.6 GHz

24/29

Required Source Code Changes

• I changed two public Rust libraries to have build flags for using
usnet_sockets

• tiny-http is a HTTP implementation on top of the Rust standard
library sockets

◦ Needed few-lines patch to alter the import statements

• rouille is a web framework using tiny-http

◦ Needed build metadata patch to specify build flag for tiny-
http

• Port key libraries that use Rust standard library sockets

◦ Then no change to applications needed

25/29

Results

• No TCP/IP handling in trusted code base (TCB)

◦ TCB consists of NIC driver, netmap, netmap code in Rust,
syscalls and data structures of libraries, Rust compiler

• Implementation lacks features in these areas:

◦ usnetd: multicast, broadcast, IPv6, IP fragmentation

◦ usnet_sockets: DNS, IPv6, timeout, UDP, non-blocking IO,
epoll wrapper, routing for multiple NICs

◦ smoltcp: congestion control, selective/delayed ACKs, IP
fragmentation, MTU discovery, DHCP

26/29

Discussion

• smoltcp: packet loss impacts goodput, needs more TCP features

• usnetd: multi-core scalability needed for line rate

• usnet_sockets:

◦ Needs fine-grained locking and notification for multi-thread
usage

◦ Needs also epoll syscall wrappers for file descriptors to
support mio or Tokio

• Only addressed memory corruption, not implementation
correctness

27/29

Conclusion

• usnetd switch for memory-safe userspace network stacks

◦ Shares NIC and IP between kernel and userspace network
stacks

◦ Protects the kernel network stack

• usnet_sockets library for Rust

◦ Provides memory-safe TCP/IP without changing application
logic

◦ Integrates well with the rest of the system through loopback
interface

◦ Demonstrated ~10 GBit/s TCP goodput

• Together they provide memory-safe TCP/IP for Rust on Linux
without changing the application logic

• More optimizations and features needed for parity with Linux
network stack

28/29

Future Work

• API completeness

• Macvtap, DPDK, and AF_XDP backends for usnetd

• Programmable switches as alternative to usnetd or as backend?

◦ VALE-bpf, AF_XDP, PFQ: need bytecode/script for switching
and firewall logic

• Provide libc-compatible LD_PRELOAD wrapper for language
agnostic memory-safe network stack

29/29

	Memory-safe Network Services Through A Userspace Networking Switch
	Motivation
	High-impact Remote Vulnerabilities in Linux
	TCP/IP in Userspace
	Switching Packets for Kernel and Userspace Network Stacks
	Threat Model
	Requirements for the Deployment of a Memory-safe TCP/IP Service on Linux
	Problem Statement for Memory-safe TCP/IP in Userspace
	Existing Solutions for Memory-safe TCP/IP Services
	Existing Solutions for Memory-safe TCP/IP Services
	Existing L4 Switches for Userspace Network Stacks
	Design of usnetd: Memory-safe L4 Switch for Userspace Network Stacks
	Prototype for usnetd on netmap
	Design of usnet_sockets: Rust userspace networking library
	Prototype for usnet_sockets on smoltcp
	Performance Evaluation
	Packet Matching Speed of usnetd
	TCP Goodput of usnet_sockets on usnetd
	TCP Goodput: Analysis of Overhead
	HTTP Request Completion
	Required Source Code Changes
	Results
	Discussion
	Conclusion
	Future Work

