

	Introduction	Preceding History
	Motivation
	Research Question

	The ZPAQ Standard Format for Compressed Data	ZPAQ Specification and Working Principle
	Context Mixing: Components and Context Data
	ZPAQL: Virtual Machine and Instruction Set
	Examples: A simple Context Model and LZ1 with a Context Model

	Notes on Data Compression
	Compilers, Rust and Python	Classical Compiler Architecture
	The Rust Programming Language
	The Python Programming Language

	Considerations and Challenges with ZPAQL as Target Language
	Selection of the Python-subset as Source Language	Decision on the Feature Set
	Grammar and Semantics

	Design of the Compiler in Rust	Exposed API
	Parser and Tokenizer
	Grammar of the Intermediate Representation
	IR Generation and the Stack
	Optimizations in the Intermediate Representation
	ZPAQL Generation and Register Assignment
	Debugging

	Exemplary Configurations and Programs	Compression of PNM Image Data using a Context Model
	Bringing the Brotli Algorithm to ZPAQ

	Evaluation	Compiler Construction
	Performance of the Compiler
	Analysis of the generated Code and Comparison with handwritten Code of LZ1
	Suitability of ZPAQ as universal Standard

	Conclusion
	Bibliography
	Tutorial
	Visualizations	Arithmetic Coding
	Context Mixing
	ZPAQ Format
	ZPAQL Virtual Machine
	Compiler Pipeline

Freie Universität Berlin
Department of Mathematics and Computer Science
Institute of Computer Science
Bachelor Thesis
Design of a Python-subset Compiler in Rust targeting ZPAQL
Kai Lüke
kailueke@riseup.net
Supervisors: Prof. Dr. Günter Rote
Dipl.-Inform. Till Zoppke
Berlin, August 23, 2016

Abstract
The compressed data container format ZPAQ embeds decompression algorithms as ZPAQL bytecode in the
archive. This work contributes a Python-subset compiler written in Rust for the assembly language ZPAQL,
discusses design decisions and improvements. On the way it explains ZPAQ and some theoretical and prac-
tical properties of context mixing compression by the example of compressing digits of . As use cases for
the compiler it shows a lossless compression algorithm for PNM image data, a LZ77 variant ported to Python
from ZPAQL to measure compiler overhead and as most complex case an implementation of the Brotli algo-
rithm. It aims to make the development of algorithms for ZPAQ more accessible and leverage the discussion
whether the current specification limits the suitability of ZPAQ as an universal standard for compressed
archives.

Contents
1 Introduction 1
1.1 Preceding History . 2
1.2 Motivation . 3
1.3 Research Question . 4
2 The ZPAQ Standard Format for Compressed Data 5
2.1 ZPAQ Specication and Working Principle . 5
2.2 Context Mixing: Components and Context Data . 8
2.3 ZPAQL: Virtual Machine and Instruction Set . 9
2.4 Examples: A simple Context Model and LZ1 with a Context Model 12
3 Notes on Data Compression 16
4 Compilers, Rust and Python 21
4.1 Classical Compiler Architecture . 21
4.2 The Rust Programming Language . 22
4.3 The Python Programming Language . 22
5 Considerations and Challenges with ZPAQL as Target Language 23
6 Selection of the Python-subset as Source Language 25
6.1 Decision on the Feature Set . 25
6.2 Grammar and Semantics . 26
7 Design of the Compiler in Rust 29
7.1 Exposed API . 29
7.2 Parser and Tokenizer . 30
7.3 Grammar of the Intermediate Representation . 31
7.4 IR Generation and the Stack . 32
7.5 Optimizations in the Intermediate Representation . 33
7.6 ZPAQL Generation and Register Assignment . 33
7.7 Debugging . 34

vi Contents
8 Exemplary Configurations and Programs 35
8.1 Compression of PNM Image Data using a Context Model 35
8.2 Bringing the Brotli Algorithm to ZPAQ . 37
9 Evaluation 38
9.1 Compiler Construction . 38
9.2 Performance of the Compiler . 38
9.3 Analysis of the generated Code and Comparison with handwritten Code of LZ1 39
9.4 Suitability of ZPAQ as universal Standard . 40
10 Conclusion 41
Bibliography 42
A Tutorial 44
B Visualizations 47
B.1 Arithmetic Coding . 47
B.2 Context Mixing . 48
B.3 ZPAQ Format . 49
B.4 ZPAQL Virtual Machine . 50
B.5 Compiler Pipeline . 51

1 Introduction
It takes time until new and incompatible data compression algorithms become distributed in software. Also
different input data should often be handled with different compression techniques, utilizing best knowledge
about the data.
The ZPAQ standard format for compressed data is a container format which also holds the needed decompres-
sion algorithms. They can be specied through a context mixing model of several predictors with a bytecode
which computes the context data for them (used for arithmetic coding), a bytecode for postprocessing (used
for transformations or stand-alone algorithms) or any combination of both.
Arithmetic coding spreads symbols over a number range partitioned according to the probability distribution.
That way a likely to be encoded symbol can get a bigger part. The whole message is encoded at once from the
beginning. And every time a symbol was chosen the – possibly modied – probability distribution is applied
again to segment its part of the number range. Then for the next symbol this is the number range partition
to choose from. When the last symbol has been processed, the number range is very narrow compared to
the beginning and every number of it now represents the whole message. So the shortest in terms of binary
representation can be selected and a decoder can do the same steps again by choosing the symbol which has
this number in its range and applying then the partitioning to this range again according to the probability
distribution. In practice, one has either to use a special end-of-message symbol or specify the message length
before to dene an end to this process.
The history which led to the development of ZPAQ shall shortly be explained in this chapter, followed by the
motivation of writing a compiler for ZPAQL and the research question of this work. In the following chapter
the whole picture of ZPAQ compression is visualized and the building blocks, i.e. context mixing and the
bytecode, are explained in detail. General theory of data compression and its limits are shortly noted on
afterwards. The main part is preceded by a short introduction to compiler construction, the implementation
language Rust and the source language Python. One chapter outlines the conditions and difculties of
ZPAQL as a compiler target. The following chapters cover the chosen Python-subset (6), the developed API
and compiler internals (7), example programs (8) and nally the evaluation (9).
References to compressors and project websites or more detailed documentation and short remarks are
located in footnotes. All websites have been accessed until August 19th 2016. Academic publications are
listed in the bibliography.

2 1 Introduction
1.1 Preceding History
A big milestone being reached in data compression has been the Lempel-Ziv algorithm which is a form of
dictionary compression due to its consistence of backward references to data slices which have already been
seen. The area of statistical data compression was rst stationary and Huffman optimal prex codes can be
mentioned for entropy coding before arithmetic coding was known. Basically, few bits should be used for
frequent symbols but more for infrequent symbols. Entropy coding developed further with adaptive coding
from the mid-80s. One major innovation called PPM (Prediction by Partial Matching) usually works on
order-N byte contexts and predictions [1] whereas DMC (Dynamic Markov Compression) predicts bits [2].
Adaptive Huffman coding was developed as well. A decade later CTW (Context Tree Weighting) also utilizes
bit prediction but mixes the learned distributions of the order-N byte contexts [3].
The predecessors to the series of PAQ compressors, called P5, P6, P12, are based on a 2-layer neural network
with online training that predicts one bit for context inputs up to order-5. At that time they were on par
with variants of PPM concerning speed and compression ratio [4].
In PAQ1 the neural network is not used anymore as the probability and condence of various models are
combined through weighted averaging. There is a non-stationary n-gram model up to order-8, a match model
for occurrences longer than 8 bytes in the last 4 MB, a cyclic model for patterns in rows and a whole word
model up to order-2. As statistical data the models mostly hold the bit counts of the contexts as one byte
in a hash table. At its release it could produce best results for a concatenation of the Calgary corpus (a data
compression benchmark) [5].
The models and their semi-stationary update were improved and PAQ2 introduced SSE (Secondary Symbol
Estimation) which improves a given probability by mapping it to a bit history. PAQ4 changed to adaptive
linear weighting and PAQ5 added another mixer. Many other versions have model improvements and added
special models or transforms. PAQAR, a fork of PAQ6, reworked the mixing architecture and could turn
models off. PAsQDa uses a transformation to map words to dictionary codes. PAQ6 variants were one after
the other leading in the Calgary challenge [6].
PAQ7 is a rewrite using neural network logistic mixing. Specically it includes a JPEG model that predicts
the Huffman codes based on the DCT coefcients. PAQ8 variants come with more le models, dictionary
or x86 call address preprocessors or a DMC model. The PAQ8HP series won the Hutter Prize for Loss-
less Compression of Human Knowledge
1
about compressing a part of an English Wikipedia dump. Many
achievements were mainly made through special models for various le formats. The simpler LPAQ pro-
vides faster but less compression and later versions aim on text compression. PAQ9A has LZ (Lempel-Ziv)
precompression and cascaded ISSE (Indirect Secondary Symbol Estimation). The detailed history including
source code is tracked on the PAQ history website
2
and in M. Mahoney’s book on data compression [7].
1 http://prize.hutter1.net/
2 The PAQ Data Compression Programs http://mattmahoney.net/dc/paq.html

1.2 Motivation 3
Parts of PAQ variants made it into the recent context mixing compressor cmix that leads the Large Text
Compression Benchmark
3
and the Silesia Open Source Compression Benchmark
4
but with around 30 GB
RAM usage
5
.
»ZPAQ is intended to replace PAQ and its variants (PAQ8, PAQ9A, LPAQ, LPQ1, etc) with similar or better
compression in a portable, standard format. Current versions of PAQ break archive compatibility with
each compression improvement. ZPAQ is intended to x that.«
6
The development of the ZPAQ archiver started from early 2009 and dened the rst version of The ZPAQ
Open Standard Format for Highly Compressed Data [8] after some months. The main idea is to move
the layout of the context mixing tree as well as the algorithm for context computation and the one for
postprocessing into the archive before each block of compressed data. There are nine components
7
to
choose from for the tree, mostly context models coming from PAQ. In addition the algorithms are provided
as bytecode for a minimal virtual machine. Hence the algorithm implementation is mostly independent of the
decompressor implementation and compatibility is preserved when improvements are made. Also depending
on the input data an appropriate compression method can be chosen. The main program using libzpaq is
an incremental journaling backup utility which supports deduplication and encryption and provides various
compression levels using LZ77, BWT (Burrows-Wheeler Transform) and context models [9]. But there are
also reference decoders unzpaq and tiny_unzpaq, a simple pipeline application zpipe and a development
tool zpaqd
8
.
The fastqz compressor [10] for Sanger FASTQ format DNA strings and quality scores also uses the ZPAQ
format and was submitted to the Pistoia Alliance Sequence Squeeze Competition
9
.
1.2 Motivation
The development of ZPAQ continued specially for the use case of the incremental archiver program. But
the appearance of new algorithms for ZPAQ reached a rather low level, as well as the number of authors
10
despite the fact that it offers a good environment for research about context mixing methods and crafting
of special solutions for use cases with a known type of data because one can build upon existing parts. The
leading reason could be that the assembly language ZPAQL with its few registers is not very accessible and
programs are hard to grasp or get easily unmanageable when complex tasks like parsing a header should be
accomplished. Therefore, the rst question is whether another language can support ZPAQ’s popularity.
3 http://mattmahoney.net/dc/text.html
4 http://mattmahoney.net/dc/silesia.html
5 http://www.byronknoll.com/cmix.html
6 http://mattmahoney.net/dc/zpaq.html
7 See chapter 2.2 or http://mattmahoney.net/dc/dce.html#Section_437
8 http://mattmahoney.net/dc/zpaqutil.html
9 http://www.pistoiaalliance.org/projects/sequence-squeeze/
10 The majority of available congurations is listed on http://mattmahoney.net/dc/zpaqutil.html

4 1 Introduction
If that is the case, then a compiler for a well-known programming language could help to overcome the
obstacle of learning ZPAQL for implementing new algorithms.
The second question is whether the design decisions of the ZPAQ specication allow for arbitrary compres-
sion algorithms to be used with ZPAQ, even if they bring their own encoder or a dictionary or whether ZPAQ
is rather meant to be a platform for algorithms that use the predened prediction components like (I)CM
and (I)SSE
11
together with the built-in arithmetic coder.
1.3 Research Question
As an approach towards these questions mentioned above this work wants to contribute a compiler that
emits ZPAQL for a subset of the popular Python programming language. The subset should be oriented to
the data types of the ZPAQL virtual machine. The architecture and operation of the Python code should
still maintain similarity to the ZPAQL execution workow to avoid abstractions. That means only integers,
no objects, oating-point numbers or strings, but the ability to address the two memory sections of the VM
as arrays. Running the Python code should be possible as usual which helps to keep debugging out of the
ZPAQL VM.
All this would ease the development of new algorithms and discover limitations of the current ZPAQ stan-
dard. An example for a new algorithm should be provided by developing a model for uncompressed PNM
image data which should be compared to other lossless image compressors.
As an example for a complex all-purpose algorithm the recent Brotli compression algorithm[11] will be
brought to ZPAQ. It was proposed for HTTP2 compression, includes a dictionary and combines LZ77, Huff-
man coding and order-2 context modeling. This is a challenge because it has to be solely implemented in
the postprocessing step and also needs memory management.
The quality of the compiler will be evaluated by comparing to an existing hand-written implementation of a
LZ compressor. Design decisions of the compiler and difculties faced will be discussed.
11 (Indirect) context model and (indirect) secondary symbol estimation, four of the nine ZPAQ components.

2 The ZPAQ Standard Format for Compressed Data
This chapter gives an introduction to the ZPAQ archive specication in the current version 2.06. A small use
case is explained as well as the needed commands. Then the context mixing components and the language
ZPAQL are presented. Finally, two real-world examples are explained.
2.1 ZPAQ Specification and Working Principle
The Level 1 specication of this container format required the data always to be encoded with the arithmetic
coder and at least one predictor. A backwards incompatible change leading to Level 2 was to allow raw data
to be stored and thus no prediction component to be used, as needed for incompressible data or standalone
postprocessor algorithms e.g. a fast LZ variant [8]. It also denes a standard encryption for the whole archive
le and introduces an append-only journaling mode for incremental backups and deduplication on top of the
streaming format which is still the basis of the archive. These features are out of scope for this work and
therefore the focus is on the compression architecture and the virtual machine.
It is only specied what a valid archive is and how decompression takes place (nevertheless, probability
and thus context computation have to be symmetric for compression and decompression with an arithmetic
coder). In case of ambiguity in the specication there is the reference implementation unzpaq
1
, a tiny
version
2
of it and the more mature library libzpaq that is used by the zpaq archiver
3
, the zpaqd development
tool
4
or as plug-in for le archivers and incorporates a x86/64 JIT compiler for ZPAQL.
»The ZPAQ open standard species a compressed representation for one or more byte (8 bit value) se-
quences. A ZPAQ stream consists of a sequence of blocks that can be decompressed independently. A
block consists of a sequence of segments that must be decompressed sequentially from the beginning of
the block. Each segment might represent an array of bytes in memory, a le, or a contiguous portion of a
le.« [8]
A block header has no information on the length of the block because like for segments an end marker is
used. Memory requirements for the two bytecodes hcomp and pcomp are dened in the header. It is noted
1 http://mattmahoney.net/dc/unzpaq206.cpp
2 http://mattmahoney.net/dc/tiny_unzpaq.cpp
3 http://mattmahoney.net/dc/zpaq715.zip
4 http://mattmahoney.net/dc/zpaqd715.zip

6 2 The ZPAQ Standard Format for Compressed Data
whether arithmetic coding is used and what predicting components make up the context mixing tree. Each
component has arguments also determining memory use. If needed the bytecode hcomp is embedded to
compute context data for the components of the context mixing tree for each byte. All components give
bit predictions for the partially decoded byte (these are passed upwards the tree) and are trained afterwards
with the correct bit which was decoded based on the root (i.e. the last) node probability for each bit.
The optionally arithmetic coded data which comes from all segment content (not the segment lename or
comment) in the block can start with an embedded pcomp bytecode or declare that no pcomp bytecode
is present. Therefore, the hcomp section can already be used for context computation to compress the
pcomp bytecode (0 for empty or 1 followed by the length and the bytecode). The pcomp code is used for
postprocessing, may it be a simple transform or the decompression of LZ codes. It gets each decoded byte
as input and outputs a number of bytes not necessarily equal to the input.
That means the four combinations for a block are in total no compression, only context mixing with arith-
metic coding, only postprocessing the stored data or context mixing with subsequent postprocessing (from
the decompressor perspective). The chosen selection applies for all (le) segments in the block.
The following charts illustrate the named parts and their relation to each other for a sample compression use
case. The transform for x86 machine code enhances compressibility by converting relative to static addresses
after each CALL and JMP instruction (0xE8 and 0xE9). It is applied on the two input les, a x86 executable
binary and shared library. Therefore a ZPAQL pcomp program needs to be supplied in the archive block
to revert that transform. Encoding takes place based on the probability distribution of 1 and 0 for each bit
of the current byte as they are provided as prediction by the root node of the simple context mixing tree.
The hcomp program is loaded into the ZPAQL VM and computes contexts for the two components. The
ISSE maps the context to a bit history which is used as context for a learning mixer that should improve the
probability provided by the rst component, a CM (Context Model) which should learn good predictions for
the given context. The whole model and the hcomp bytecode are also embedded into the archive block.
The two les are stored as two segments in the block (like a ”solid” archive). Because the preprocessor might
be any external program or also included in the compressing archiver and is of no use for decompression it
is therefore not mentioned in the archive anymore.

2.1 ZPAQ Specication and Working Principle 7
Figure 2.1: Possible compression scheme
Decompression takes place in reverse manner and hcomp is loaded into the ZPAQL VM to compute the
context data for the components of the model. They supply the predictions to the arithmetic coder and are
corrected afterwards. For the reverse transform of each segment pcomp is read from the decoded stream and
loaded in another VM. Then the two segments follow in the decoding step and go through the postprocessing
transform before they are written out as les.
Figure 2.2: Accompanying decompression
The tool zpaqd only supports the streaming format and can be used to construct this example setup by writing
a conguration le for it and then adding two les as segments into a block. But beside the algorithms that are
already dened for compression in libzpaq for the levels 1 to 5 (LZ77, BWT and context mixing) it also offers
the ability to specify a customized model (E8E9, LZ77 transformations or also word models are supported)
given as argument, so that the above conguration can also be brought to life with something like zpaq
a [archive] [files] -method s8.4c22.0.255.255i3 (denotation documented in libzpaq.h and the

8 2 The ZPAQ Standard Format for Compressed Data
zpaq man page
5
). Here the rst 8 accounts for

 MB blocks, so that both segments should t into
one block (yet the zpaq application uses the API in a way that creates an additional block), then an order-2
CM and an order-3 ISSE are chained. The resulting conguration including the two ZPAQL programs stored
in the archive can be listed with zpaqd l [archive].
For a more general view c.f. the compression workow of the zpaq end user archiver as described in the
article mentioned [9]. It selects one of its predened algorithms based on their performance for the data and
uses deduplication through the journaling format.
2.2 Context Mixing: Components and Context Data
The way the mixing takes place has evolved from the neural network approach in P5 over weighted averaging
from PAQ1 and adaptive linear weighting to logistic mixing in PAQ7 (like in a neural network and instead of
back propagation the weights are updated). In ZPAQ the probabilities are also handled in the logistic domain

 as output of the predicting components and can be averaged or rened by other
components before the output of the last component is transformed

to
be used in the arithmetic coder to code one bit [7].
ZPAQ denes nine components. Up to 255 of them can be used in a model but only linear trees can be
constructed as mixing network i.e. when they are listed, they can only refer to predictions of preceding
components. The last one listed is the top node [8]. They get their context data input through computation
in hcomp. To supply the component with a higher order context, a rotating history buffer needs to be
maintained by hcomp. Now the components are listed without their arguments and internals which can be
found in the specication [8].
CONST is the most simple and gives a xed prediction. It does not receive context data.
CM is a direct context model that holds counts of zeros/ones and a prediction for each of the eight bits
expected in the specied context. The counts are used to update the prediction to reduce the error. The
given context data is often a hash (and collisions can hurt compression). Also the partially decoded byte is
expanded to nine bits and XORed with the context after coding each bit, so that the next bit’s prediction is
accessed in the table.
ICM is an indirect context model consisting of a hash table to map the given context and the partially
decoded byte to a bit history which is then mapped to a prediction like in a direct context model. Histories
are counts of 1 and 0 and represented by states (explained in [7], chapter 4.1.3. Indirect Models) and
adjusted after the prediction to a better tting state. The prediction is also updated.
5 http://mattmahoney.net/dc/zpaqdoc.html

2.3 ZPAQL: Virtual Machine and Instruction Set 9
MATCH is a model that takes the following byte of a found string match as prediction until a mismatch
happens. Therefore it keeps its own history buffer and the prediction is also varied depending on the length
of the match. The match is found based on the (higher order) context hash input. This works because the
search does not take place in the history buffer, but a table maps each context hash input to the last element
in the history buffer.
AVG outputs a non-adaptive weighted average of the predictions of two other components. It does not
receive context data.
MIX maps a context and the masked partially decoded byte to weights for producing an averaged prediction
of some other components. Afterwards the weights are updated to reduce the prediction error.
MIX2 is a simpler MIX and can only take two predictions as input.
SSE stands for secondary symbol estimation (Dmitry Shkarin, also known as Adaptive Probability Map in
PAQ7 or LPAQ) because it receives a context as input and takes the prediction of another component which
is then quantized. For the given context this quantized prediction and the next closest quantization value
are mapped to predictions which result in an interpolation of both. Initially this map is an identity, but
the update step corrects the prediction of the closer-to-original quantized value the same way as in the CM
update phase.
»A typical place for SSE is to adjust the output of a mixer using a low order (0 or 1) context. SSE components
may be chained in series with contexts typically in increasing order. Or they may be in parallel with
independent contexts, and the results mixed or averaged together.« [7]
ISSE is an indirect secondary symbol estimator that, as an SSE, renes the prediction of another component
based on a context which is mapped to a bit history like in an ICM. That bit history is set as context for an
adaptive MIX to select the weights to combine the original prediction with a xed prediction.
»Generally, the best compression is obtained when each ISSE context contains the lower order context of
its input.« [7]
2.3 ZPAQL: Virtual Machine and Instruction Set
At the beginning of each block the two bytecodes hcomp and pcomp, if needed, are loaded to a virtual
machine for each. It consists of the program counter , 32-bit registers , , and , an 1-bit condition
ag , 256 32-bit registers

and the arrays (8-bit elements) and (32-bit elements). Initially, all
registers and arrays hold . The size of and is dened in the block header along with the information
which context-mixing components are used.
For each encoded or decoded byte hcomp gets run to set the contexts for the components. The context
data for a components has to be stored in . As rst input hcomp sees whether a postprocessor

10 2 The ZPAQ Standard Format for Compressed Data
is present and if yes, then its length and bytecode. Afterwards the data of the segments is coming, without
any separation. Except for the which is set to and the register which is used for the input all state
is preserved between the calls.
The postprocessor pcomp is run for each decoded byte of the block to revert the preprocessing and puts out
the data via an instruction. After each segment it is invoked with

 as input to mark the end.
There is an assembly language for the bytecode which is also used in the table describing the corresponding
opcodes in the specication [8]. In this assembly language whitespace can only occur between opcode bytes
in order to visualize that a=b is a 1-byte opcode while a= 123 is a 2-byte opcode. Comments are written in
brackets.
Operations on the 32-bit registers and elements of are

and interpreted as positive numbers in
comparisons. Indexes access into and is or and denoted as *B for , *C for
 and *D for . Because holds bytes operations on *B and *C are and swapping via
B*<>A or C*<>A alters only the lower byte of [8].
Instructions Semantics and Constraints
error cause execution to fail
X++ increment X by 1 (X is one of A, B, C, D, *B, *C, *D)
X-- decrement X by 1
X! ip all bits
X=0 set X to 0
X<>A swap (X is not A)
X=X set X to X
X= N set X to
A+=X add X on A
A-=X subtract X from A
A*=X multiply A by X
A/=X divide A by X (set if)
A%=X (set if)
A&=X binary AND with X
A&~=X binary AND with ipped bits of X
A|=X binary OR with X
A^=X binary XOR with X
A<<=X bitwise left shift of A by bits
A>>=X bitwise right shift of A by bits

2.3 ZPAQL: Virtual Machine and Instruction Set 11
A+= N, A-= N,
A*= N, A/= N,
A%= N, A&= N,
A&~= N, A|= N,
A^= N, A<<= N,
A>>= N
same as previous instructions but with
A==X if otherwise
A<X if otherwise
A>X if otherwise
A== N, A< N,
A> N
same as above but with
A=R N, B=R N,
C=R N, D=R N
set A, B, C or D to

R=A N set

to A
HALT ends current execution of the program
OUT output in pcomp, ignored in hcomp
HASH
HASHD
JMP I add to PC relative to the following instruction, so has
no effect and is an endless loop (in the specication a positive N is used, so

JT N jump if
JF N jump if
LJ L

 with

(in the specication written as LJ N M because
it is a 3-byte instruction with

)
Beside the opcodes libzpaq also supports using helper macros like if(not)? … (else)? … endif, the
long jump versions if(not)?l … (elsel)? … endifl and do … (while|until|forever) which will
be converted to conditional jump opcodes. An if-block is executed if , the while-jump is executed if
 , an until-jump is executed if . So that means the test for the condition has to be written before
the macro: a> 255 if … endif. The statements can also be interweaved, e.g. write a do-while-loop or a
continue-jump as do … if … forever endif.
In a ZPAQ cong le the two sections for hcomp and pcomp are written behind the context mixing model
conguration. The pcomp section is optional. Comments can appear everywhere within brackets.

12 2 The ZPAQ Standard Format for Compressed Data
Syntax: (where and

,

,

and

dene the size of and for each section)
comp HH HM PH PM N
(I COMPONENT (ARG)+)*
hcomp
(ZPAQL_INSTR)*
halt
(pcomp (PREPROCESSOR_COMMAND)? ;
(ZPAQL_INSTR)*
halt
)?
end
2.4 Examples: A simple Context Model and LZ1 with a Context Model
The following example conguration is based on fast.cfg from the utility site
6
and can be used for text
compression and adaptively combines (independently of contexts, just based on the success of the last pre-
diction) the prediction of a direct order-1 context model with the prediction of a order-4 ISSE which renes
the prediction of a order-2 ICM. The arguments for the components are documented in the specication [8].
1 comp 2 2 0 0 4 (hh hm ph pm n)
(where H gets the size of 2^hh in hcomp or 2^ph in comp ,
M 2^hm or 2^pm and n is the number of
context -mixing components)
0 cm 19 4 (will get an order 1 context)
6 1 icm 16 (order 2, chained to isse)
2 isse 19 1 (order 4, has reference to ICM component 1)
3 mix2 0 0 2 24 0 (moderate adapting mixer between CM and ISSE
based on which predicts better, no contexts even for bits)
(ICM and ISSE part adapted from fast.cfg)
11 hcomp
r=a 2 (R2 = A, input byte in R2)
d=0
a<<= 9 *d=a (H[D] = A) (set context to actual byte)
(leaving first 9 bits free for the partially decoded byte)
16 a=r 2 (A = R2)
*b=a (M[B] = A) (save input byte in rotating buffer)
(full M is used with pointer b)
a=0 hash (shortcut for A = (A + M[B] + 512) * 773)
b-- hash
21 d= 1 *d=a (order 2 hash for H[1])
b-- hash b-- hash
d= 2 *d=a (order 4 hash for H[2])
26
6 http://mattmahoney.net/dc/zpaqutil.html, cong les with a ”post” instead of ”pcomp” are in the old format of the
Level 1 specication

2.4 Examples: A simple Context Model and LZ1 with a Context Model 13
(H[3] stays 0 as fixed context for MIX2)
halt (execution stops here for this input byte)
end
Listing 2.1: Example mfast.cfg without a pcomp section
To demonstrate the compression phases and parts involved in detail the LZ1 conguration from the utility
site is chosen, but also the BWT.1 examples are worth to look at.
The LZ1 conguration relies on a preprocessor lzpre.cpp which turns the input data into a compressed
LZ77-variant representation of codes for match copies and literal strings. This is further compressed through
arithmetic coding with probabilities provided by an ICM (indirect context model).
The contexts are always hashed as from two values and as follows. For the rst byte
of an offset number of a match the length of the match and the current state (2…4, i.e. 1…3 bytes to follow
as offset number) are used as context. For the remaining bytes of an offset number (or a new code if no
bytes are remaining) the previous context and the current state (previous state - 1, i.e. 0…2 bytes to follow)
are used as context. For the rst literal of a literal string the number of literals and the state 5 are used as
context. For the following literals the current literal and the state 5 are used as context. For a new code
after a literal string instead of a hash of the rst value just 0 and the current state (1) are used as context.
The bytecode of pcomp is not specially handled.
To revert the LZ1 compression pcomp parses the literal and match codes and maintains a 16 MB

byte buffer in .
(lz1.cfg
3 (C) 2011 Dell Inc. Written by Matt Mahoney
Licensed under GPL v3, http://www.gnu.org/copyleft/gpl.html)
comp 0 0 0 24 1
0 icm 12 (sometimes ”0 cm 20 48” will compress better)
8 hcomp
(c=state: 0=init, 1=expect LZ77 literal or match code,
2..4=expect n-1 offset bytes,
5..68=expect n-4 literals)
b=a (save input)
13 a=c a== 1 if (expect code ccxxxxxx as input)
(cc is number of offset bytes following)
(00xxxxxx means x+1 literal bytes follow)
a=b a>>= 6 a&= 3 a> 0 if
a++ c=a (high 2 bits is code length)
18 *d=0 a=b a>>= 3 hashd
else
a=b a&= 63 a+= 5 c=a (literal length)
*d=0 a=b hashd
endif
23 else
a== 5 if (end of literal)
c= 1 *d=0

14 2 The ZPAQ Standard Format for Compressed Data
else
a== 0 if (init)
28 c= 124 *d=0 (5+length of postprocessor)
else (literal or offset)
c--
(model literals in order 1 context , offset order 0)
a> 5 if *d=0 a=b hashd endif
33 endif
endif
endif
(model parse state as context)
38 a=c a> 5 if a= 5 endif hashd
halt
pcomp ./lzpre c ; (code below is equivalent to ”lzpre d”)
a> 255 if (end of segment)
b=0 d=0 (reset , is last command before halt)
43 else
(LZ77 decoder: b=i, c=c d=state r1=len r2=off
state = d = 0 = expect literal or match code
1 = decoding a literal with len bytes left
2 = expecting last offset byte of a match
48 3,4 = expecting 2,3 match offset bytes
i = b = position in 16M output buffer
c = c = input byte
len = r1 = length of match or literal
off = r2 = offset of match back from i
53 Input format:
00llllll: literal of length lllllll=1..64 to follow
01lllooo oooooooo: length lll=5..12, offset o=1..2048
10llllll oooooooo oooooooo: l=1..64 offset =1..65536
11llllll oooooooo oooooooo oooooooo: 1..64, 1..2^24)
58 c=a a=d a== 0 if
a=c a>>= 6 a++ d=a
a== 1 if (state?)
a+=c r=a 1 a=0 r=a 2 (literal len=c+1 off=0)
else
63 a== 2 if a=c a&= 7 r=a 2 (short match: off=c&7)
a=c a>>= 3 a-= 3 r=a 1 (len=(c>>3)-3)
else (3 or 4 byte match)
a=c a&= 63 a++ r=a 1 a=0 r=a 2 (off=0, len=(c&63) -1)
endif
68 endif
else
a== 1 if (writing literal)
a=c *b=a b++ out
a=r 1 a-- a== 0 if d=0 endif r=a 1 (if (--len==0) state=0)
73 else
a> 2 if (reading offset)
a=r 2 a<<= 8 a|=c r=a 2 d-- (off=off<<8|c, --state)
else (state==2, write match)
a=r 2 a<<= 8 a|=c c=a a=b a-=c a-- c=a (c=i-off -1)
78 d=r 1 (d=len)
do (copy and output d=len bytes)
a=*c *b=a out c++ b++
d-- a=d a> 0 while
(d=state=0. off, len don’t matter)

2.4 Examples: A simple Context Model and LZ1 with a Context Model 15
83 endif
endif
endif
endif
halt
88 end
Listing 2.2: lz1.cfg
For comparison a Python port for usage with the zpaqlpy compiler can be found in test/lz1.py. It differs
in processing the pcomp bytecode with the current opcode byte as context for the next.

3 Notes on Data Compression
Not all data can be compressed. Because if we build a – necessarily bijective
1
– compressing scheme

for strings to strings , starting from an identity, every time we remap an
input

, whereas

, to a shorter compressed representation

, whereas

and

, so that now

and

, we have to map

to

so that

and indeed make this swap in order to maintain the bijection, ending up with

 because

. So while

compresses

it expands

and this holds for each iteration when we change our
compression scheme.
Luckily, most data which is relevant to us and interesting for compression has patterns and other data where
we do not understand the patterns appears to be random and is out of scope for compression algorithms. If
we do not have any knowledge about the data except that its symbols are equally distributed with probability

for each symbol , best we can do is to use an optimal code reaching the Shannon entropy as coding
length per symbol:

For

would be 8 bit as usual and we can simply store the data instead of encoding it again.
In general, given that the distribution is known, we can choose e.g. a non-adaptive arithmetic encoder to
almost reach the limit of bits per symbol. But adaptive arithmetic coding with PPM and others could
even give a better average because the distribution is adjusted by exploiting patterns. Therefore, to craft a
well performing algorithm for the expected input data knowledge about the patterns is needed in order to
give good predictions and go beyond the Shannon entropy as average size.
To dene the lower limit that can be reached the concept of algorithmic information or Kolmogorov complex-
ity of a string is developed. Basically it is the length of the shortest program in a xed language that produces
this string. The language choice only inuences a constant variation because an interpreter could be written.
When comparing different compressors in a benchmark it is common to include the decompressor size in
the measurement because it could also hold data or generate it via computation.
1 We want to allow for every string to be compressed, resulting in the same number – because they have to differ – of com-
pressed strings which also should be decompressible. Another common approach to prove that there is no universal lossless
compression is a counting argument which uses the pigeonhole principle.

17
Using this principle with ZPAQ and its pcomp section the rst million digits of if form of the ~1 MB text
le pi.txt from the Canterbury Miscellaneous Corpus
2
can be compressed to a 114 bytes ZPAQ archive
which consists of no data stored and a postprocessing step which computes to the given precision and
outputs it as text
3
. This extreme case of the earlier mentioned knowledge about the data can serve as a
bridge between Kolmogorov complexity and adaptive arithmetic coding. For faster execution of the ZPAQ
model we only take the rst ten thousand digits of . Normally the limit most compressors would stay
above (because the digits are equally distributed) is

 byte
instead of 10 KB.
With a ZPAQ context model we can, instead of generating the digits in pcomp phase, also use the next
expected digit as context so that the predictor will quickly learn that e.g. character 3 comes in context
3. But prediction can not be 100 % for one symbol as other symbols could occur and there has to be a
probability greater zero assigned to them. Also whether the end of the message is reached is encoded as a
special symbol. So the range of the arithmetic encoder gets still narrowed when a perfectly predicted digit
is encoded, but on such a small level that still only 121 bytes are needed for the ZPAQ archive consisting
of the CM model conguration, hcomp bytecode and the arithmetically coded ten thousand digits of .
That shows that we can go much beyond the entropy limit down to Kolmogorov complexity by using
context modeling and adaptive arithmetic coding. And still the context model is usable for all input data in
opposition to computing in pcomp. The overhead of the fact that 100 % can not be used when predicting
seems to be linear for the message size and can be observed when compressing 50 or 200 MB zeros with a
CM, resulting in around 0.0000022 byte per input byte.
(pi10k.cfg 2016 Kai Lüke and Matt Mahoney
2 instead of generating the digits in pcomp phase, use the next expected digit as context
To compress: zpaqd cinst pi10k.cfg pi10k.zpaq pi10000.txt)
comp 0 14 0 0 1 (2^14 > 10000)
0 cm 13 0
7 hcomp
ifnot (only first run)
(Compute pi to 10000 digits in M using the formula:
pi=4; for (d=r1*20/3;d>0;--d) pi=pi*d/(2*d+1)+2;
where r1 is the number of base 100 digits.
12 The precision is 1 bit per iteration so 20/3
is slightly more than the log2 (100) we need.)
a= 100 a*=a r=a 1 (r1 = digits base 100)
a*= 7 d=a (d = n iterations)
*b= 4 (M=4)
17 do
(multiply M *= d, carry in c)
b=r 1 c=0
do
22 b--
2 http://corpus.canterbury.ac.nz/descriptions/#misc
3 http://mattmahoney.net/dc/pi.cfg

18 3 Notes on Data Compression
a=*b a*=d a+=c c=a a%= 10 *b=a
a=c a/= 10 c=a
a=b a> 0 while
27
(divide M /= (2d+1), remainder in c)
a=d a+=d a++ d=a
do
a=c a*= 10 a+=*b c=a a/=d *b=a
32 a=c a%=d c=a
a=r 1 b++ a>b while
a=d a>>= 1 d=a
(add 2)
37 b=0 a= 2 a+=*b *b=a
d-- a=d a== 0 until
halt
endif
a=*b a<<= 9 *d=a b++ (set context for expected digit taken from M)
42 halt
end
Listing 3.1: pi10k.cfg
Even if this conguration is usable for other input than it does not give good compression. It can be
merged with the general text model from Listing 2.1 and change between using the CM for order-1 contexts
and for the expected digits contexts every time the start of is detected until a mismatch is found. This
way all occurrences of are coded with only a few bits.
(mixed_pi2.cfg
use the next expected digit as context for CM or a general text model of fast.cfg
3 a MIX2 will select between them
To compress: zpaqd c mixed_pi2.cfg text_pi.zpaq text_with_appearance_of_pi.txt
)
comp 2 14 0 0 4 (2^14 > 10000)
0 cm 18 0 (order 1 or digits of pi)
8 1 icm 16 (order 2, chained to isse)
2 isse 19 1 (order 4)
3 mix2 0 0 2 24 0 (moderate adapting mixer between CM and ISSE based on which predicts
better)
hcomp
r=a 2
13 a=r 0
a== 0 if (only first run)
(Compute pi to 10000 digits using the formula:
pi=4; for (d=r1*20/3;d>0;--d) pi=pi*d/(2*d+1)+2;
where r1 is the number of base 100 digits.
18 The precision is 1 bit per iteration so 20/3
is slightly more than the log2 (100) we need.)
a= 100 a*=a r=a 1 (r1 = digits base 100)
a*= 7 d=a (d = n iterations)
*b= 4 (M=4)
23 do
(multiply M *= d, carry in c)

19
b=r 1 c=0
do
b--
28 a=*b a*=d a+=c c=a a%= 10 *b=a
a=c a/= 10 c=a
a=b a> 0 while
(divide M /= (2d+1), remainder in c)
33 a=d a+=d a++ d=a
do
a=c a*= 10 a+=*b c=a a/=d *b=a
a=c a%=d c=a
a=r 1 b++ a>b while
38 a=d a>>= 1 d=a
(add 2)
b=0 a= 2 a+=*b *b=a
d-- a=d a== 0 until
43 c= 2 (point to 4 of 3.14)
a= 1
r=a 0
a<<= 14 a-- (last element of ring buffer)
b=a
48 a-= 4 (first element of ring bufer, pointer in r3)
r=a 3
halt (input 0 came from pcomp, also to restart c=2 is enough)
endif
(CM part)
53 d=0
a=r 2 a-= 48
c--
a==*c
c++
58 if (pi: set context for expected digit)
a=*c c++ a<<= 1 a++ a<<= 9 *d=a (distinguish between pi number context and character
context by 1 bit for sure)
else (other:)
a=r 2 a<<= 10 *d=a c= 2 (set context to actual byte)
endif
63 (a in r2, lower border of ring buffer in r3)
(ICM and ISSE part adapted from fast.cfg)
a=r 2
*b=a a=0 (save in rotating buffer M)
hash b--
68 d=a (save hash) a=r 3 a>b if b++ b++ b++ b++ endif a=d
hash d= 1 *d=a
b--
d=a (save hash) a=r 3 a>b if b++ b++ b++ b++ endif a=d
hash b--
73 d=a (save hash) a=r 3 a>b if b++ b++ b++ b++ endif a=d
hash d= 2 *d=a
halt
end
Listing 3.2: mixedpi2.cfg

20 3 Notes on Data Compression
For real-life use cases it is often not possible to give perfect predictions. Good contexts can help to bring
order into the statistics about previous data. Beside the manual approach heuristic context models can be
generated for data by calculating the data’s autocorrelation function [12] or as done in PAQ by recognizing
two-dimensional strides for table or graphical data.
Even compressed JPEG photos can be further compressed by 10% - 30% by predicting the Huffman-coded
DCT coefcients when using the decoded values as contexts (done in PAQ7-8, Stuft, PackJPG, WinZIP [7]).
The ZPAQ conguration jpg_test2.cfg uses a preprocessor to expand Huffman codes to DCT coefcients
and later uses them as contexts
4
. The PackJPG approach continues to be developed by Dropbox under the
name lepton
5
and supports progressive beside baseline JPEGs.
Overall modeling and prediction are an AI problem because e.g. for a given sentence start a likely following
word has to be provided or how a picture with a missing area is going to continue. Remarkable results
have been accomplished by using PAQ8 as machine learning tool for e.g. building a game AI with it serving
as a classier, for interactive input text prediction, text classication, shape recognition and lossy image
compression [13].
4 http://mattmahoney.net/dc/zpaqutil.html
5 https://github.com/dropbox/lepton

4 Compilers, Rust and Python
Compilers and their parts covering the subproblems are mentioned here. Then the programming language
Rust which was used for the compiler development is shortly presented as well as Python as the source
language.
4.1 Classical Compiler Architecture
The task to translate a program from a source language into an equivalent program in the target language is
usually split into independent phases where each phase passes its result to the next phase (see [14], Figure
1.6). In most cases the target language is very low level, like machine instructions of a CPU. One variation
of a compiler structure including an intermediate representation language will be explained.
The tokenizer or lexer cuts the input stream into tokens which represent words/units of the source language
which are normally the allowed terminal symbols of the grammar. The parser reads the tokens in sequence
and ts them into nonterminals of the source language grammar by following the production rules until
all tokens are consumed and the start production is completed. On the way it generates an AST (Abstract
Syntax Tree) as semantic representation of the program in the source language. This completes the analysis
done in the frontend.
Synthesis takes place in the backend. The AST is traversed to generate IR (intermediate representation)
instructions. This step usually keeps track of variable names and their assignments in a symbol table. An
optimization pass can be applied to the IR. The code generator produces instructions in the target language
and they can be passed through optimization steps as well.
Checking for errors has to be done in every analysis step to nd lexical errors in the tokenizer, syntactical
errors while parsing, type errors and others during semantic analysis.
If the target language is not the end product but only an assembly language than an assembler produces
object les which will be combined by a linker to a nal executable program.
There are also preprocessors for the source language, multi-pass compilers and JIT (just-in-time) compilers
which are used in interpreters and translate only an often-used section of the source program during runtime
for a performance gain.

22 4 Compilers, Rust and Python
4.2 The Rust Programming Language
»Rust is a systems programming language focused on three goals: safety, speed, and concurrency. It
maintains these goals without having a garbage collector, making it a useful language for a number of use
cases other languages aren’t good at: embedding in other languages, programs with specic space and
time requirements, and writing low-level code, like device drivers and operating systems. It improves on
current languages targeting this space by having a number of compile-time safety checks that produce no
runtime overhead, while eliminating all data races. Rust also aims to achieve ‘zero-cost abstractions’ even
though some of these abstractions feel like those of a high-level language. Even then, Rust still allows
precise control like a low-level language would.«
1
The rst stable 1.0 release of the Mozilla-sponsored language was in May 2015, the current version is 1.11
from August 2016. Pattern matching, denition of data structures and traits together with strong types bring
Rust close to functional languages like Haskell. A program can in most cases only be compiled if it is free
from crashes and undened behavior unless explicitly a panic is allowed when an alternative result case of
a function is not handled. So sometimes there are many iterations until a program compiles, but then as a
gain there are assurances for the execution like memory safety instead of buffer overows. But on the other
side one has to be aware of the ow and reference of data through variables and has to comply to the rules
imposed by the move semantics of the language, because the ownership model is the core for the safety
guarantees.
Part of the language is the denition of test functions for software testing and inline documentation which can
include test cases. As tooling the build system and package manager Cargo comes along with the compiler
rustc which is invoked by Cargo. The inline documentation can be extracted to HTML.
Because of the noted advantages it seems that Rust ts well for compiler construction and offers a pleasing
workow once accustomed with its type system because of the more rare runtime errors leading to less
debugging.
4.3 The Python Programming Language
Python has been around for two decades now and is still representative for an easy to learn imperative
language with a simple syntax. It features dynamic types and a pragmatic approach to object orientation
with functional elements and closures. Freeing memory is done by reference counting and the language
is tightly coupled with the way it is interpreted. In order to fulll a protocol/trait it relies on functions an
object needs to implement.
1 Book Introduction ”The Rust Programming Language”: https://doc.rust-lang.org/book/index.html

5 Considerations and Challenges with ZPAQL as
Target Language
The ZPAQL bytecode that runs on the virtual machine is executed for every input byte, from the beginning
i.e. the rst instruction. Then is set to the input byte while all other state is maintained between the
executions. Also if running as hcomp section then the rst elements of are not general purpose memory
but serve as input for the context mixing components. Execution in a ZPAQL VM is sequential with no
parallelism. Beside the dened size of and there is no heap memory allocation or stack available. If
dynamic memory allocation is wanted it has to be implemented on top of or .
It is Turing-complete but the bytecode size is restricted to around 64 KB (in hcomp few bytes less as the
context model needs to be dened before). Also there is no keyword for a data section dened in the
ZPAQL assembly language and it would be of no use as the bytecode content itself is not addressable and
also unmodiable. But program data could be prepended before the stored data and retrieved by reading
in hcomp or pcomp and discarded while pcomp generates the output. If data should just be accessed by
hcomp it could also be stored as a skipped part of the pcomp bytecode as this is seen by hcomp before the
decoded data. This could also be used if an interpreter is written in ZPAQL.
The jump instructions only support a xed and not a variable destination. That means instead of jumping to
a return address which the caller passes to the function the return can only be achieved through an identier
for a jump table with predened jump points.
The instruction set is rather simple and aimed at 32-bit integers. To keep expensive abstractions away, the
source language should e.g. not include oating point numbers or 64-bit integers. Most calculations have
to be done using register as accumulator because the others lack advanced instructions.
There is no instruction for reading the next byte or saying that context computation has nished - the
program needs to halt and is then executed again from the beginning. Therefore, additional runtime code is
needed to continue execution where it stopped if e.g. convenient input reading should be allowed without
disrupting the program ow or the nished computation of context data should be signaled.
It seems to be a viable plan to keep the organizational structure of a source program close to the resulting
ZPAQL program but with added convenience through a runtime API which is anyway needed for input and
output. Instead of introducing special functions to set the context data as rst elements in , and also

24 5 Considerations and Challenges with ZPAQL as Target Language
 can just be fully exposed as data structure in the source language and also be used as arrays for other
means with low abstraction costs. This keeps the structure of handwritten ZPAQL programs close to those
in the source language. But in order to keep variables in a stack, with its 256 elements is not enough, so
expanding seems to be a good solution. To model the repetitive execution of hcomp and pcomp they
could be dened as functions in the source program (think main function) and it would also be possible to
pass the input byte as argument which also keeps the similarity to a handwritten ZPAQL source.
As the runtime code abstractions for providing the mentioned read-API are not too high, the similarity to
original ZPAQL les is more a cosmetic design decision. And if a context-set-API which halts and continues
execution through runtime code is present then hcomp and pcomp functions could be replaced by main
functions which are entered only once and thus hide the fact that execution starts from the beginning for
every input byte. Still dynamic memory management on top of and seems to be costly and thus
departing to far from ZPAQL and adding more complicated data structures could hurt performance too
much.
It would be helping if the source program is standalone executable without being compiled to ZPAQL to
ease debugging by staying outside the ZPAQL VM as long as possible.
Before ZPAQL instructions are generated by the compiler it would be helpful if most complicated operations
are solved on the IR level already, like the saving, restoring and other memory management.

6 Selection of the Python-subset as Source
Language
Considerations are mentioned again before the chosen subset is presented together with the API functions
and organizational source code constraints. Then the grammar is listed with a short note on the behavior of
elements.
6.1 Decision on the Feature Set
Based on the preceding thoughts the input should be a single Python le containing both the code for hcomp
and pcomp as functions which could also call other functions but no imports are allowed. The compiler
should not deal with strings, lists, arbitrary big numbers, classes, closures and (function) objects but only
support a reduced set with variables having 32-bit integer values. The context model should be dened
like in a ZPAQL conguration and the predened arrays and should be exposed as well as the size
exponents , , , and as number of components used.
API functions out(a) for the pcomp out instruction and read_b() to read the next input byte by halting
and returning to the current state of execution should be provided. As well as helpers if a dynamic memory
management for additional arrays is implemented in Python on top of and . This API needs to be
included as corresponding ZPAQL runtime in the output of the compiler. The Python runtime should also
allow execution as standalone program with a similar interface to the zpaqd development tool which can
run pcomp and hcomp on a given input.
All the code segments need to be separated, namely the context model denition and other common deni-
tions/functions, pcomp and hcomp code with their variables and functions and then the runtime API and
nally the code for standalone execution. Thus a template approach was chosen which uses comment lines
as separation marks. Then the compiler extracts only the sections it needs to compile.

26 6 Selection of the Python-subset as Source Language
source.py Template Sections Editable?
Denition of the ZPAQ conguration header data (memory size, context mixing com-
ponents) and optionally functions and variables used by both hcomp and pcomp
yes
API functions for input and output, initialization of memory no
function hcomp and associated global variables and functions yes
function pcomp and associated global variables and functions yes
code for standalone execution of the Python le analog to running a ZPAQL congu-
ration with zpaqd r [cfg] p|h
no
Of course it could be organized in a different way that is more appealing based on the alternatives mentioned
in the previous chapter e.g. with two more idiomatic Python les for hcomp and pcomp without special
entry functions and the runtime in a different le which either imports the two les or vice versa.
6.2 Grammar and Semantics
The Python grammar as specied in the language reference
1
has been simplied where possible. It still
allows dictionaries and strings, however not for program code but just for the denition of the context
mixing components. Tuples, unpacking, lists and list comprehensions, for-loops, with-blocks, support for
async-coroutines, import, try/raise/except, decorators, lambda expressions or named arguments have been
removed.
Not all what is parsed is allowed as source code, e.g. nonlocal, dicts, strings or the @-operator for matrix
multiplication but therefore a better error message can be provided than just a parser error. The names of
the productions have been kept even if they are simplied. It would be best if the grammar is expanded to
parse full Python again and let the code generator decide what to support.
Grammar with NUMBER, NAME, ”symbols”, NEWLINE, INDENT, DEDENT or STRING as terminals
Prog (NEWLINE* stmt)* ENDMARKER?
funcdef ”def” NAME Parameters ”:” suite
Parameters ”(” Typedargslist? ”)”
Typedargslist Tfpdef (”=” test)? (”,” Tfpdef (”=” test)?)* (”,” (”**” Tfpdef)?)?
Tfpdef NAME (”:” test)?
stmt simple_stmt | compound_stmt
simple_stmt small_stmt (”;” small_stmt)* ”;”? NEWLINE
small_stmt expr_stmt, pass_stmt, ow_stmt, global_stmt, nonlocal_stmt
expr_stmt (store_assign augassign test) | ((store_assign ”=”)? test)
1 https://docs.python.org/3/reference/grammar.html

6.2 Grammar and Semantics 27
store_assign NAME (”[” test ”]”)?
augassign ”+=” | ”-=” | ”*=” | ”@=” | ”//=” | ”/=” | ”%=”
”&=” | ”|=” | ”^=” | ”<<=” | ”>>=” | ”**=”
pass_stmt ”pass”
ow_stmt break_stmt | continue_stmt | return_stmt
break_stmt ”break”
continue_stmt ”continue”
return_stmt ”return” test
global_stmt ”global” NAME (”,” NAME)*
nonlocal_stmt ”nonlocal” NAME (”,” NAME)*
compound_stmt if_stmt | while_stmt | funcdef
if_stmt ”if” test ”:” suite (”elif” test ”:” suite)* (”else” ”:” suite)?
while_stmt ”while” test ”:” suite (”else” ”:” suite)?
suite simple_stmt, NEWLINE INDENT stmt+ DEDENT
test or_test
test_nocond or_test
or_test and_test (”or” and_test)*
and_test not_test (”and” not_test)*
not_test comparison | (”not” not_test)
comparison expr (comp_op expr)*
comp_op ”<” | ”>” | ”==” | ”>=” | ”<=” | ”!=” | ”in” | ”not” ”in” | ”is” | ”is” ”not”
expr xor_expr (”|” xor_expr)*
xor_expr and_expr (”^” and_expr)*
and_expr shift_expr (”&” shift_expr)*
shift_expr arith_expr | (arith_expr (shift_op arith_expr)+)
shift_op ”<<” | ”>>”
arith_expr term | (term (t_op term)+)
t_op ”+” | ”-”
term factor (f_op factor)*
f_op ”*” | ”@” | ”/” | ”%” | ”//”
factor (”+” factor) | (”-” factor) | (”~” factor) | power
power atom_expr (”**” factor)?
atom_expr (NAME ”(” arglist? ”)”) | (NAME ”[” test ”]”) | atom
atom (”(” test ”)”) | (”” dictorsetmaker? ””) | NUMBER | STRING+ | ”...”
”None” | ”True” | ”False” | NAME
dictorsetmaker dictorsetmaker_t (”,” dictorsetmaker_t)* ”,”?
dictorsetmaker_t test ”:” test
arglist test (”,” test)* ”,”?

28 6 Selection of the Python-subset as Source Language
The semantics of the language elements as described in the reference
2
stay mostly the same, even if the
usable feature set is still reduced as stated before. In particular, one has to be aware of integer overows
which are absent in Python but are present in ZPAQL and thus all computations are in

i.e.

. Except for the bit shift operations with a shift of more than 32 bits. In this case the Python-subset
will do a shift by bits. To achieve the semantics of (v << X) % 2**32 or (v >> X) % 2**32
with the resulting value should directly be set to 0 instead. Also / 0 and % 0 does not fail in ZPAQL
but results in a 0 value.
For a wrong Python input the current compiler specication might behave in a different way and even accept
it without a failure. Therefore it is required that the input is a valid Python program which runs without
exceptions.
This requirement is also important because the current compiler does not check array boundaries, so
index%len(hH) or index&((1<<hh)-1) should be used e.g. for a ring buffer because after the original
size of there comes the stack. If run as plain Python le, an exception is thrown anyway then because it
checks array boundaries.
2 https://docs.python.org/3/reference/index.html

7 Design of the Compiler in Rust
The source code for the zpaqlpy compiler is located at https://github.com/pothos/zpaqlpy and in-
cludes the test data and other les mentioned. This chapter is about the developed API the source le uses
and about the process of developing the compiler and its internals.
7.1 Exposed API
The 32- or 8-bit memory areas and are available as arrays hH, pH, hM, pM depending on being a
hcomp or pcomp section with size

dened in the header as available constants hh, hm,
ph, pm. There is support for len(hH), len(pH), len(hM), len(pM) instead of calculating

. But
in general instead of using len() for dynamically allocated arrays as well, special functions like len_hH()
are used to visibly expose their types and do runtime checks already in Python. NONE is a shortcut for
 .
Other functions Description
c = read_b() Read one input byte, might leave VM execution to get the next
input byte before return
push_b(c) Put read byte c back, overwrites if already present (no buffer)
c = peek_b() Read but do not consume next byte, might leave VM execution
to get the next input byte before return
out(c) In pcomp: write c to output stream
error() Execution fails with ”Bad ZPAQL opcode”
aref = alloc_pH(asize), … Allocate an array of size asize on pH/pM/hH/hM
aref = array_pH(intaddr), … Cast an integer address back to a reference
len_pH(aref), … Get the length of an array in pH/pM/hH/hM
free_pH(aref), … Free the memory in pH/pM/hH/hM again by destructing the array
If backend implementations addr_alloc_pH(size), addr_free_pH(addr), … are dened then dy-
namic memory management is available though the API functions alloc_pM and free_pM. The cast

30 7 Design of the Compiler in Rust
array_pH(numbervar) can be used to save a type check in ZPAQL at runtime. Also in plain Python the
cast from an address is needed after an array reference was itself stored into and thus became an address
number and is then retrieved as a number again instead of a reference. In general, there are no boxed types
but by context a variable is used as address.
The last addressable starting point for any list is because the compiler uses
the 32nd bit to distinguish between pointers to and .
The provided implementations of addr_alloc_pM, addr_free_pM, … can be found in the template (run
./zpaqlpy --emit-template or see src/template.rs). The returned pointer is expected to point at the
rst element of the array. One entry before the rst element is used to store whether this memory section
is free or not. Before that the length of the array is stored, i.e. for arrays in H and the
four bytes of the 32-bit length for arrays in .
Beside these constraints the implementations are free how to nd a free region. The example uses getter
and setter functions for the 32-bit length value as four bytes in . For allocation it skips over the blocks
from the beginning until a sufciently sized block is found. If this block is bigger then the rest of it is kept
free and might be merged with the next block if it is also free. That also happens when a block is freed
again, then it is even merged with the previous block if that is free.
7.2 Parser and Tokenizer
Tokens are known Python keywords and symbols like operators or brackets, names or strings and num-
bers as converted values. Initially the Python module tokenize was used through piping source code
in python3 -m tokenize -e and processing its output to build tokens as a Rust data structure
(see src/tok.rs). Later on the code commonly residing in /usr/lib/python3.5/tokenize.py and
/usr/lib/python3.5/token.py was ported to Rust (see src/rtok.rs) in order to be independent from
external calls. It is assumed that the input is UTF-8 without a BOM (Byte Order Mark).
The parser is built with a parser generator out of the grammar specication. It constructs the AST with each
production. The parser library lalrpop
1
was chosen in LALR(1) recursive ascent mode for that purpose.
The elements of the produced AST are based on the abstract grammar of the Python module ast
2
but
simplied (see src/ast.rs) and give a structured representation of the source program. In fact it is not a tree
but a list of statements. They can be one of FunctionDef which holds the function body as list of statements,
Return, Assign and AugAssign which hold the expressions that are concerned, While and If which hold
their body and else-part as list of statements and the test as expression, Global, Pass, Break, Continue and
Expr which encapsulates an expression. These expressions can be one of BoolOpE to evaluate AND and OR
1 https://github.com/nikomatsakis/lalrpop
2 https://docs.python.org/3.5/library/ast.html#abstract-grammar

7.3 Grammar of the Intermediate Representation 31
over expressions, BinOp for evaluation of an arithmetic expression over two expressions, UnaryOpE for an
unary operation, Compare for comparisons over expressions, Call for a function call including arguments
as expressions, Num for an integer, NameConstant for True and False, Name for a variable or Subscript for
index access to an array variable. The precedence of and and or is resolved during parsing into a binary tree
of BoolOpE elements. Contrary to that one has to be aware that with Compare the semantics of a == b
== c and (a == b) == c differ, the middle operand is split up and passed to the next comparison. Their
results are evaluated and merged with and until the result can not be True anymore, so this was better left
to the IR generator.
7.3 Grammar of the Intermediate Representation
The IR was chosen to be close to ZPAQL but easier to write. While ZPAQL has the registers
 and arrays and the IR gives only control about and and no other
registers. There are no new data structures added. So the other registers can be used for address compu-
tation and temporary calculations when the IR is converted to ZPAQL. That means the temporary variables
t0…t255 of the IR are a direct mapping to registers

. Because the input byte is in at the beginning of
hcomp/pcomp execution the IR relies on the guarantee that

 before the rst instruction.
stmt var ”=” var (op var)?
var ”=” uop var
”if” var ”goto” label
”ifN” var ”goto” label
”ifEq” var var ”goto” label (to be used for optimizations)
”ifNeq” var var ”goto” label
”goto” label
”:” label ”:”
”halt”
”error”
”out” var
var t | ”H[” t ”]” | ”H[t0+” x ”]” | ”H[t252+” x ”]” | ”H[” x ”]” | ”M[” t ”]” | ”M[” x ”]” | x
op ”+” | ”-” | ”*” | ”/” | ”//” | ”%” | ”**” | ”<<” | ”>>” | ”|” | ”^”
”&” | ”or” | ”and” | ”==” | ”!=” | ”<” | ”<=” | ”>” | ”>=”
uop ”!” | ”~” | ”-”
t ”t0” | … | ”t255”
x ”0” | … | ”4294967295”
label [a-z_0-9~A-Z]+
comment ”#…\n”

32 7 Design of the Compiler in Rust
The var on the left side of an assignment can not be a number. The operators or and and differ from the
binary versions | and & as they represent the semantics of Python or and and i.e. they evaluate to the original
value and not simply to the boolean choices of 1 and 0 for True and False while the binary operators use
bitwise AND and OR. Operator !v tests against v==0 while ~v inverts the bits.
The choices made might not be the best and a totally different IR is possible which could introduce variables
or stack operations. For efciency it might be interesting to go into the direction of static single assignment
with linear scan register allocation or an algorithm with graph-coloring register allocation. Currently local
Python variables are on the stack and temporary variables are in because together they could be more
than 256 and anyway local variables need to be stored on stack before a call. But they could be joined in a
common pool and the current limit of maximum 256 temporary variables in could be widened by using
elements of as needed. Maybe even LLVM as a very popular IR could be used with its many optimization
passes available.
7.4 IR Generation and the Stack
Due to the reduced features in the subset the compilation of the Python source can be done in a similar way
a C source would be compiled. The local variables of a function are held on the stack which is produced by
expanding beyond its dened size for the conguration. Global variables are held in the beginning of the
stack. The temporary variables t0…t251 are used for intermediate or address computations whereas t0 is
the base pointer for the stack and t252 is a copy of the global base pointer. t255 holds the last input byte,
t254 the reading state and t253 the read byte for the API function read_b() which stops the execution
and returns to the caller with the newly acquired byte when the bytecode is run again.
The original size

of is extended to hold the stack of size . To calculate a valid resulting size of

 the formula

 is used.
There are no IR instructions for calling a function or stack operations on , but there are helping meta
instructions. These will be converted to simple IR instructions and have been dened for handling blocks,
saving and loading variables on the stack in , calls and returns to comply to a calling convention, predened
IR code sections for the runtime API and the jumping table to continue execution after a return. The initial
IR code is responsible to either call the Python functions hcomp(c)/pcomp(c) with the new input byte or
continue execution if it was interrupted through a read_b() API call. Also it sets the base pointer for the
rst run and denes the API function read_b.
The function traverse() in src/gen_ir.rs generates IR instructions for the given (part of an) AST. It is
recursively used and consults the symbol table for free temporary variables, position of local variables and the
mapping of global variables. Also it uses the recursive function evaluate() which takes only an expression
part of an AST and returns IR instructions and the IR variable that holds the value after these instructions

7.5 Optimizations in the Intermediate Representation 33
have been executed. Returning the instructions makes testing easier. If pcomp(c)/hcomp(c) only contain
a pass then the whole pcomp/hcomp section is omitted.
The temporary variables have to be saved on the stack before a call. Also the current base pointer and then
the return ID for the jump table need to be saved there as part of the calling convention. The new base
pointer in t0 points at the return ID. Arguments passed come afterwards and the called function will address
them via . On return the previous base pointer will be restored to t0 and the return ID is copied
in t2 for the jumper table while the return value is in t1 before the jump to the code for the jump table is
done in order to return after the call instruction.
It should be possible to treat local variables like temporary variables to reduce code size and stack usage by
a compiler ag. Also the calling convention could be changed to avoid the stack and globals could be stored
in tx.
For now the compiler passes IR code around as vectors (lists), but for a more idiomatic Rust style iterators
could be used.
7.5 Optimizations in the Intermediate Representation
Unused functions occupy space in the bytecode and hence are removed by searching for calls and if none is
found it can be removed. This is repeated until no function was removed anymore. Assignments which are
unused or could be merged into one assignment are not yet recognized.
During IR generation it is not known whether a temporary variable really needs to be saved on the
stack before a call or whether it is not in use afterwards anyway. Therefore the helper macro in-
structions MarkTempVarStart and MarkTempVarEnd are inserted around each function scope. Sav-
ing and restoring temporary variables is done through the macros StoreTempVars{identifiers} and
LoadTempVars{identifiers}. The optimization pass goes through the IR instructions in reverse order to
reason about the lifetimes and removes the identiers from the load and store macro instructions which are
not live i.e. referred to after the load.
Compiler books have much more to offer and there are many classical optimizations which could be looked
on for further improvements. Caching could be used and constant expressions evaluated during IR genera-
tion. This is just done for a row of assignments on allocated arrays in .
7.6 ZPAQL Generation and Register Assignment
The IR was chosen to be easily convertible to ZPAQL by using the registers and to calculate
and move values between and . Thus for the beginning a very simple but inefcient solution was

34 7 Design of the Compiler in Rust
taken. The function emit_zpaql() in src/gen_zpaql.rs takes IR code and yields ZPAQL code by calling
assign_var_to_a(var) for the operands (if needed saving one value from in), and applying the
operator on them. The result is moved from to the target by calling assign_a_to_var(var). In order to
load a number in calc_number(value) is used and for values greater 255 multiple bit shifts are needed.
All of this helper functions emit ZPAQL code which is combined as result of each function in a similar way
to the IR generation.
Then a more advanced solution was chosen with pattern matching to avoid the ubiquitous transfer over
and detect an augmented assignment like +=1 and simply increase the value at its location. Therefore the
helper function gen_loc_for_var() was introduced to get the location handle and the other helpers were
widened to operate with the notion of a location meaning registers or memory positions through pointers
instead of only . Tracking recent values of variables in the registers or memory locations for reuse was also
helpful in order to produce less code output. Yet it is a more careful issue now to make changes because
the cache entries concerning the location and the variable need - at least - to be invalidated for a correct
output.
After the code generation a special optimization takes place to simplify byte assignments on arrays in .
They have been produced in the IR generation if a row of successive assignments like in an initialization was
detected. Thus the pointer variable is always just increased and even not saved on until all assignments
are nished.
Resolving labels to positions for the jump destinations is done as last step before the ZPAQL assembly code
is written out. The opcode size for each instruction is known and thus the label’s positions can be hold in
a hash table. The second pass through the code can then replace the virtual GoTo placeholder instruction
with the real long jump.
7.7 Debugging
It is important to run the plain Python version because it contains assertions and test it before trying to
compile it to ZPAQL. For the Python runtime a compare option was introduced to test the correctness of the
pcomp code which should restore the preprocessor input. Each output byte is compared to the expected
output and a debugger shell spawned if a mismatch occurs.
Because compiler optimizations are likely to introduce bugs there is a small test suite in the Makele. It
compares the output of the Python code for pcomp and hcomp to the output of running the compiled
ZPAQL code. Mostly zpaqd r CFG p is used but also a ZPAQ VM implementation in Rust included in the
compiler (option --run-hcomp) because zpaqd r CFG h does not print .

8 Exemplary Configurations and Programs
As a showcase of the benets of having a compiler for a high-level language like Python this chapter presents
and evaluates two new ZPAQ congurations. The rst is a new image compression model which can parse
a header and combine various context predictors. And the second is an implementation of the Brotli decom-
pression scheme in the pcomp phase.
8.1 Compression of PNM Image Data using a Context Model
PNM is a lossless image format which in variant P6 with a maximum color value of 256 saves 8-bit RGB
color channels as bytes after a short header with height and width
1
. To predict the value of a color channel
the value of the neighboring pixels can be used as context as far as they have been seen in the stream. L is
referring to the left pixel, LU to the upper left, U to the pixel above and UR to the upper right.
For grayscale images in a custom format such a context model has already been developed
2
for ZPAQ and
performed better than PNG compression. Even if it does not match the ZPAQ conguration bmp_j4c.cfg,
it is therefore much faster because the context mixing network is simpler.
The PNM model test/pnm.py parses the header in Python to dene the history buffer for one row and
takes a similar approach as the grayscale model but with separated context models for each channel. They
are mixed together also with an averaged value context model and indirect models. This mixed prediction
is again combined by a mixer with the prediction of a chain of ISSE (with a hash of various contexts and the
last byte as context) rening the prediction of an ICM (with an averaged value context).
Color transforms like the subtract green transform in WebP can improve compression by decorrelating colors
because one color component is often also a good predictor for the others
3
and that link should be reduced to
improve prediction for the same color. The PNM model can use it as pre- and postprocessor, mapping
to and back. The preprocessor is in the separate Python le test/subtract_green.
1 http://netpbm.sourceforge.net/doc/ppm.html
2 http://www.modejong.com/blog/post15_zpaql_grayscale/index.html
3 https://developers.google.com/speed/webp/docs/webp_lossless_bitstream_specification#subtract_
green_transform

36 8 Exemplary Congurations and Programs
To measure the compression ratio four image les were converted to PNM in test/ and compressed (512
pixel high peppers.pnm, monarch.pnm, kodim23.pnm
4
and 1020 pixel high rafale.pnm
5
). FLIF is a new
lossless format
6
.
(a) kodim23 (b) peppers (c) monarch (d) rafale
Figure 8.1: Images of the benchmark
Method Total le size in byte
ZPAQ archive with bmp_j4c.cfg (in BMP format, uses special color transform) 1785405
ZPAQ archive with pnm.cfg 1908258
FLIF 1914297
WebP 2256458
PNG 2938153
For now it does not use e.g. delta coding or other predictors beside the average from neighbor values. Also
it could provide another predicted color value which is estimated by the recent development. Beside that
the color transform should depend on the image or a way needs to be found to move its advantage out from
the preprocessor into the predictors. Like the mentioned grayscale model it uses an additional context for
the mixer depending on image noise.
By using Python the model can easily be improved and writing it in ZPAQL would have been a bigger an
bug-prone effort. The bytecode overhead as of writing is around 3 KB.
For the large 53 MB photo canon24.pnm
7
it would reach the 6th place with 21,326,964 bytes (89 seconds
for (de)compression) in the benchmark for lossless picture compression published in a paper about BWT
image compression [15]. For kodim23.pnm it would reach the 4th place with an archive size of 369,519
bytes. An overall benchmark for a huge number of les like in
8
or
9
has not been done up to now.
4 Commonly used for image compression benchmarks, available under http://r0k.us/graphics/kodak/
5 http://www.maximumcompression.com/data/bmp.php
6 http://flif.info/
7 https://web.archive.org/web/20140702040431/http://www.squeezechart.com/canon24.pnm
8 http://www.squeezechart.com/bitmap.html
9 http://imagecompression.info/gralic/LPCB.html

8.2 Bringing the Brotli Algorithm to ZPAQ 37
8.2 Bringing the Brotli Algorithm to ZPAQ
The algorithm has to be implemented as postprocessor in pcomp and uses the Brotli compressor
10
as pre-
processor. Because the dictionary itself is almost twice the maximum bytecode size allowed it has to be
prepended before the rst segment of the compressed Brotli data for being read into memory. Following
Brotli streams as additional segments in the same block can use a byte different from the rst dictionary byte
as prex instead of prepending the whole dictionary again.
Instead of porting the C library or writing a new implementation based on the Brotli specication [11] it
was easier to port a decompressor written in Rust
11
to the Python-subset (see test/brotli.py). It works
as standalone Python program test/brotli.py and can be compiled to ZPAQL with a bytecode size of
64870 bytes (ZPAQ cong le test/brotli.cfg).
This means the size of an empty archive is already 184 KB if no context mixing is used for the dictionary
and bytecode. A simple order-1 ICM model brings it down to 90 KB. The slightly more advanced model of
mfast.cfg and its hcomp code reach 64 KB in total.
The overhead is less signicant for bigger archives and trying to reduce it by applying context mixing to the
whole block might not always improve the result because the Brotli data could be expanded in coding size.
For the four sample PNM les it saves 133 KB which is almost the size of the dictionary and bytecode (from
3615 KB with no arithmetic coding down to 3482 KB in total). For the enwik8 benchmark
12
(100 MB
Wikipedia dump) however this would not even make sense because mfast.cfg alone performs better by
reaching 24720 KB instead of 30303 KB when used together with Brotli data and the dictionary/bytecode
overhead. The same Brotli data without arithmetic coding through context model can be stored in around
30416 KB, depending on the Brotli compressor options it might go down to around 26000 KB.
Decompression is much slower than with the C or Rust Brotli implementations. The ZPAQL implementation
needs 118 seconds for enwik8 instead of 0.5 or 2.1 seconds for the reference C implementation and the one
of Mark Adler
13
. The memory management is not very efcient, specially dealing with byte arrays on is
expensive and the compiler could sometimes produce better code by avoiding the intermediate variables in
. Beside that ZPAQL is JIT-compiled by libzpaq in a rather simple way and so an advanced JIT backend on
top of LLVM could help.
But it shows that ZPAQ can be used with a very different algorithm and it still maintains backwards com-
patibility. A ZPAQ decompressor could also detect if the embedded pcomp bytecode is in fact a Brotli
implementation and skip its execution by using one of the faster C or Rust implementations. That way new
algorithms become instantly available while new versions of decompressors can have a speed advantage by
replacing the bytecode execution with the equivalent library call.
10 https://github.com/google/brotli
11 https://github.com/ende76/brotli-rs
12 Used for the Hutter Prize compression challenge, comparison here: http://mattmahoney.net/dc/text.html
13 https://github.com/madler/brotli

9 Evaluation
What follows in this chapter is a review on the outcome so far of working on a compiler as well as an
attempt to provide one possible answer to the question whether — or how well — ZPAQ suits to be a
general standard for data compression.
9.1 Compiler Construction
Rust provided a good environment to prevent multiple bugs by detecting them at compile time. Yet it takes
up to four minutes for an iterative build which is also due to the big parser generated by lalrpop. Recently
there is development in a table-driven mode which could provide faster compile times by producing less
parser code. Also the upcoming MIR intermediate language will allow the Rust compiler to cache compiled
code segments if they have not been altered. This way test-driven development would be more easy because
of fast iterations.
Even if Rust provides inbuilt test support is has not been used as the compiled code output was mainly tested
with zpaqd. This could be improved, specially with the small ZPAQL VM implementation that is already
included and used for testing the correctness of computations through the Makele. The code lacks inline
documentation and the structure is sometimes not idiomatic to Rust. Error handling currently uses panics
instead of propagation of success or failure via result types.
9.2 Performance of the Compiler
The choice of the Python-subset and IR seemed to be supporting a fast development of the compiler even if
a lot of optimization passes are still missing. There might be compiler bugs which have not been discovered
up to now as the test coverage is not too extensive.
While the original ZPAQL le for test/lz1.orig.cfg needs 251 bytes for an empty archive the port
test/lz1.py compiled to bytecode needs 1255 bytes for an empty archive which is an overhead of around
1000 bytes compared to handwritten LZ1.

9.3 Analysis of the generated Code and Comparison with handwritten Code of LZ1 39
Runtime Benchmarks of the LZ1 Conguration in ZPAQL and Python for the four PNMs
ZPAQ cong Compression time (sec) Archive size (bytes) Decompression time (sec)
zpaqlpy lz1.cfg 1.6 3350016 1.85
handwritten lz1.orig.cfg 1.3 3349062 1.53
9.3 Analysis of the generated Code and Comparison with handwritten
Code of LZ1
The original test/lz1.orig.cfg is very dense and tries to hold values only in the registers if possible. Only
in the pcomp code two variables are used along with as history buffer. Sometimes variables are moved
between the registers because certain operations are only available on . Without comments it would be
difcult to guess what it does and make changes.
On the other hand the compiled test/lz1.cfg from the Python version is rather large, specially when all
comments are embedded which is the default. It does not harm the bytecode size but is useful for debugging
and partly allows extraction of the original source as well as the IR code by invoking:
egrep ’\(*[0-9]+: ’ test/lz1.cfg # Python code
egrep ’\(+’ test/lz1.cfg | egrep -v ’\(*[0-9]+: ’ # IR code
The compiled le starts with the runtime code which decides whether it is the rst run. For the rst run
it sets the base pointer and starts the global denitions before calling the pcomp/hcomp function with the
input. When initialization did take place already then the code decides whether a read was interrupted to
get a new input byte or if just the pcomp/hcomp function should be called again with the new input. As
stated in the previous chapters all Python variables are in the stack and thus it takes more opcodes to do
calculations on them. The code does not use custom arrays but instead used as history buffer as the
original code. Everytime when the function returns the jump table is used to jump behind the call and then
the execution halts.
It is an advantage that changes can be made more quickly in Python and the code is more comprehensible.
But the compiled code uses a stack while it is not really necessary and instead of using the jump table for
the return it could just use the halt instruction. So for simple programs like that it would be desirable if
the compiler offers a mode without a stack by holding variables in .

40 9 Evaluation
9.4 Suitability of ZPAQ as universal Standard
ZPAQ serves well for research in context mixing algorithms and as development platform for custom algo-
rithms. But whether it will replace general compression implementations in various libraries of deate and
newer variants is open to question. Because a huge memory allocation or an endless loop can be unsafe for
decompressing untrusted archives, at least congurable limits need to be implemented into libzpaq. It might
also not be perfect for universal use as the mixing type (logarithmic) is quite xed. In addition to that the
denition of an own encoder can not use the inbuilt context mixing. A component which takes something
like as stretched prediction value would be interesting (in a valid range to leave range space
for the other bit). Also it is not possible to dene new components which maybe could be moved in an
additional section with its identier mentioned. While pcomp gets notied about segments hcomp gets not
which could also be of use.
As a compiler target the ZPAQL instruction set lacks a variable jump instruction like jmpa which would take
the value of as destination or getpc which sets to the current program counter. It would be useful to
set 32-bit values directly in one instruction like a=L 3210987654. Memory management on top of is
possible but a new data structure which allows using the OS heap would be more efcient. These proposals
could be considered for the next level of the ZPAQ specication.

10 Conclusion
It was shown that it is possible to have a compiler for ZPAQL which is also helpful for development of new
algorithms. To write the compiler large parts of the Python grammar have been ported to the format of the
LALR(1) parser library lalrpop. The core functionality of the Python module tokenize has been ported to
Rust. As a goal for a source input which should be supported a Rust implementation for Brotli decompression
has been ported to Python. A compilation scheme from a Python-subset to ZPAQL including an IR has been
planned and implemented. The compiler is platform independent as long as a Rust compiler is available. It
features an implementation of the ZPAQ VM to print the calculated context data for each input byte which
can then be compared with the calculated values of the Python source to expose ZPAQL specic semantics
or even compiler bugs.
As a result it can be said that more different approaches should be tried to reach an acceptable performance
for a large and complex code base. The ZPAQ specication does at its current point not offer various features
which might be considered for future improvements, from additional instructions up to ways of being even
more exible on how prediction takes place. But most important would be a variable jump instruction.
Compilation can be congured with command line arguments to some extend. The pcomp or hcomp part
can be disabled so no changes to the input le are needed to vary between using only context mixing, only
a preprocessor or both. Documentation can be printed via arguments as well. Four example source les are
provided: A small context mixing compression for run length encoded data (see appendix tutorial), the LZ1
port and the PNM model which already showed good results with less efforts. An extreme case is the Brotli
algorithm which needed many compiler optimizations to t under the 64 KB bytecode limit and utilizes
dynamic memory allocation.
While the compiler was developed two bugs in ZPAQ tools were found and are already resolved through
two new releases. One was a simple crash in zpaqd and the more serious one a wrong instruction in the
x86 JIT code of libzpaq which caused a miscomputation in the Brotli decompressor.
For most results there have been measurements which can be repeated because all needed tools are published
as free/libre software.
While PAQ and its internals were covered and modied in publications, ZPAQ was often only used as just
another compressor instead of a platform for compression algorithms. This work exposed the crucial part of
ZPAQ which is the embedding of the two bytecodes for hcomp and pcomp in the archive.

Bibliography
[1] J. Cleary and I. Witten. Data compression using adaptive coding and partial string matching. IEEE
Transactions on Communications, 32(4):396–402, Apr 1984. ISSN 0090-6778. doi: 10.1109/
TCOM.1984.1096090. http://dx.doi.org/10.1109/TCOM.1984.1096090.
[2] G. V. Cormack and R. N. S. Horspool. Data compression using dynamic markov modelling. Comput.
J., 30(6):541–550, December 1987. ISSN 0010-4620. doi: 10.1093/comjnl/30.6.541. http:
//dx.doi.org/10.1093/comjnl/30.6.541.
[3] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context-tree weighting method: basic prop-
erties. IEEE Transactions on Information Theory, 41(3):653–664, May 1995. ISSN 0018-9448. doi:
10.1109/18.382012. http://dx.doi.org/10.1109/18.382012.
[4] Matthew V. Mahoney. Fast text compression with neural networks. In James N. Etheredge
and Bill Z. Manaris, editors, Proceedings of the Thirteenth International Florida Articial Intelli-
gence Research Society Conference, May 22-24, 2000, Orlando, Florida, USA, pages 230–234.
AAAI Press, 2000. ISBN 1-57735-113-4. http://www.aaai.org/Library/FLAIRS/2000/
flairs00-044.php.
[5] Matthew V. Mahoney. The PAQ1 data compression program. 2002. https://cs.fit.edu/
~mmahoney/compression/paq1.pdf.
[6] Matthew V. Mahoney. Adaptive weighing of context models for lossless data compression, Florida
Tech. Technical Report CS-2005-16. 2005. https://cs.fit.edu/~mmahoney/compression/
cs200516.pdf.
[7] Matthew V. Mahoney. Data compression explained, 2010. http://mattmahoney.net/dc/dce.
html.
[8] Matthew V. Mahoney. The ZPAQ open standard format for highly compressed data - Level 2. 2016.
http://mattmahoney.net/dc/zpaq206.pdf.
[9] Matthew V. Mahoney. The ZPAQ compression algorithm. 2015. http://mattmahoney.net/dc/
zpaq_compression.pdf.

Bibliography 43
[10] James K. Boneld and Matthew V. Mahoney. Compression of FASTQ and SAM format sequencing
data. PLoS ONE, 8(3):1–10, 03 2013. doi: 10.1371/journal.pone.0059190. http://dx.doi.org/
10.1371%2Fjournal.pone.0059190.
[11] Jyrki Alakuijala and Zoltan Szabadka. Brotli Compressed Data Format. RFC 7932, July 2016. https:
//rfc-editor.org/rfc/rfc7932.txt.
[12] John Scoville. Fast autocorrelated context models for data compression. CoRR, abs/1305.5486,
2013. http://arxiv.org/abs/1305.5486.
[13] Byron Knoll and Nando de Freitas. A machine learning perspective on predictive coding with PAQ.
CoRR, abs/1108.3298, 2011. http://arxiv.org/abs/1108.3298.
[14] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley, 2006. ISBN 978-0321486813.
[15] Aftab Khan and Ashfaq Khan. Lossless colour image compression using RCT for bi-level BWCA.
Signal, Image and Video Processing, 10(3):601–607, 2016. ISSN 1863-1711. doi: 10.1007/
s11760-015-0783-3. http://dx.doi.org/10.1007/s11760-015-0783-3.

A Tutorial
A context mixing model with a preprocessor for run length encoding is written. Three components are
used to form the network. Create a new template which will then be modied at the beginning and at the
pcomp/hcomp sections:
$./zpaqlpy --emit-template > rle_model.py
$ chmod +x rle_model.py
First the size of the arrays and for each section, hcomp and pcomp needs to be specied:
hh = 2 # i.e. size is 2**2=4, because hH[0], …, hH[2] are the inputs for the
components
Listing A.1: rle_model.py
One component should give predictions based on the byte value and the second component based on the run
length, both give predictions for the next count and the next value. Then the context-mixing components
are combined to a network:
n = len({
0: ”cm 19 22”, # context table size 2*19 with
partly decoded byte as 9 bit hash xored with the context ,
4 # count limit 22
1: ”cm 19 22”,
2: ”mix2 1 0 1 30 0”,
will mix 0 and 1 together , context table size 2**1 with and-0 masking of the
partly decoded byte which is added to the context, learning rate 30
9 })
Listing A.2: rle_model.py
Each component gets its context input from the entry in after each run of the hcomp function, which is
called for each input byte of the preprocessed data, which either is to be stored through arithmetic coding in
compression phase or is retrieved through decoding in decompression phase with following postprocessing
done by calls of the pcomp function.
The context-mixing network is written to the archive in byte representation as well as the bytecode for
hcomp and pcomp (if they are used). The preprocessor command is needed when the compiled le is used

45
with zpaqd if a pcomp section is present. As the preprocessor might be any external programme or also
included in the compressing archiver and is of no use for decompression it is therefore not mentioned in the
archive anymore. This way we specify a preprocessor:
1 pcomp_invocation = ”./simple_rle”
Listing A.3: rle_model.py
$ chmod +x simple_rle # create the preprocessor as executable file and fill it as follows
#!/usr/bin/env python3
import sys
input = sys.argv[1]
4 output = sys.argv[2]
with open(input , mode=’rb’) as fi:
with open(output , mode=’wb’) as fo:
last = None
count = 0
9 data = []
for a in fi.read():
if a != last or count == 255: # count only up to 255 to use one byte
if last != None: # write out the pair
data.append(last)
14 data.append(count)
last = a # start counting
count = 1
else:
count += 1 # continue counting
19 if last != None:
data.append(last)
data.append(count)
fo.write(bytes(data))
Listing A.4: simple_rle
Then we need code in the pcomp section to undo this transform:
case_loading = False
last = NONE
3
def pcomp(c):
global case_loading, last
if c == NONE: # start of new segment , so restart our code
case_loading = False
8 last = NONE
return
if not case_loading: # c is byte to load
case_loading = True
last = c
13 else: # write out content of last c times
case_loading = False
while c > 0:

46 A Tutorial
c-= 1
out(last)
Listing A.5: rle_model.py
So now it should produce the same le as the input le:
$./simple_rle INPUTFILE input.rle
$./rle_model.py pcomp input.rle input.norle
$ cmp INPUTFILE input.norle
We can already try it, even if hcomp does not compute the context data yet (so compression is not good):
$./zpaqlpy rle_model.py
$./zpaqd c rle_model.cfg archive.zpaq FILE FILE FILE
Now we can add hcomp code to improve compression by adaptive prediction:
at_counter = False # if false , then c is byte, otherwise c is a counter
last_value = 0
3 last_counter = 0
def hcomp(c): # pcomp bytecode is passed first (or 0 if there is none)
global at_counter , last_value, last_counter
if at_counter:
8 last_counter = c
else:
last_value = c
first part of the context for the first CM is the byte replicated and
the second is whether we are at a counter (then we predict for a byte) or vice versa
13 hH[0] = (last_value << 1) + at_counter # at_counter will occupy 1 bit, therefore shift
hH[0] <<= 9 # again shift to side because of the xor with the partially decoded byte
second CM same but uses the counter for prediction
hH[1] = (last_counter << 1) + at_counter
hH[1] <<= 9
18 hH[2] = at_counter + 0 # context for mixer: is at counter (1) or not (0)
at_counter = not at_counter
Listing A.6: rle_model.py
We need to compile again before we run the nal ZPAQ conguration le:
$./zpaqlpy rle_model.py
$./zpaqd c rle_model.cfg archive.zpaq FILE FILE FILE
zpaqd needs to have simple_rle in the same folder because we specied
pcomp_invocation = ”./simple_rle”.

B Visualizations
B.1 Arithmetic Coding
Figure B.1: Encoding and decoding steps without End-of-Message symbol

B.2 Context Mixing
Figure B.2: A possible text model

B.3 ZPAQ Format
Figure B.3: Structure of a block header
Figure B.4: Structure of segments

B.4 ZPAQL Virtual Machine
Figure B.5: Architecture with its building blocks

B.5 Compiler Pipeline
Figure B.6: The parts from source reading to writing a cong le

Freie Universität Berlin
Department of Mathematics and Computer Science
Institute of Computer Science

Bachelor Thesis
Design of a Python-subset Compiler in Rust targeting ZPAQL

Kai Lüke
kailueke@riseup.net

Supervisors:

Prof. Dr. Günter Rote
Dipl.-Inform. Till Zoppke

Berlin, August 23, 2016

Abstract
The compressed data container format ZPAQ embeds decompression algorithms as ZPAQL bytecode in the
archive. This work contributes a Python-subset compiler written in Rust for the assembly language ZPAQL,
discusses design decisions and improvements. On the way it explains ZPAQ and some theoretical and practical properties of context mixing compression by the example of compressing digits of 𝜋. As use cases for
the compiler it shows a lossless compression algorithm for PNM image data, a LZ77 variant ported to Python
from ZPAQL to measure compiler overhead and as most complex case an implementation of the Brotli algorithm. It aims to make the development of algorithms for ZPAQ more accessible and leverage the discussion
whether the current specification limits the suitability of ZPAQ as an universal standard for compressed
archives.

Contents
1

2

3

Introduction

1

1.1

Preceding History .

2

1.2

Motivation .

3

1.3

Research Question .

4

The ZPAQ Standard Format for Compressed Data

5

2.1

ZPAQ Specification and Working Principle .

5

2.2

Context Mixing: Components and Context Data .

8

2.3

ZPAQL: Virtual Machine and Instruction Set .

9

2.4

Examples: A simple Context Model and LZ1 with a Context Model 12

Notes on Data Compression

16

4 Compilers, Rust and Python

21

5

4.1

Classical Compiler Architecture . 21

4.2

The Rust Programming Language . 22

4.3

The Python Programming Language . 22

Considerations and Challenges with ZPAQL as Target Language

6 Selection of the Python-subset as Source Language

7

23
25

6.1

Decision on the Feature Set . 25

6.2

Grammar and Semantics . 26

Design of the Compiler in Rust

29

7.1

Exposed API . 29

7.2

Parser and Tokenizer . 30

7.3

Grammar of the Intermediate Representation . 31

7.4

IR Generation and the Stack . 32

7.5

Optimizations in the Intermediate Representation . 33

7.6

ZPAQL Generation and Register Assignment . 33

7.7

Debugging . 34

vi

Contents

8 Exemplary Configurations and Programs

35

8.1 Compression of PNM Image Data using a Context Model 35
8.2 Bringing the Brotli Algorithm to ZPAQ . 37
9 Evaluation

38

9.1 Compiler Construction . 38
9.2 Performance of the Compiler . 38
9.3 Analysis of the generated Code and Comparison with handwritten Code of LZ1 39
9.4 Suitability of ZPAQ as universal Standard . 40
10 Conclusion

41

Bibliography

42

A Tutorial

44

B Visualizations

47

B.1 Arithmetic Coding . 47
B.2 Context Mixing . 48
B.3 ZPAQ Format . 49
B.4 ZPAQL Virtual Machine . 50
B.5 Compiler Pipeline . 51

1 Introduction
It takes time until new and incompatible data compression algorithms become distributed in software. Also
different input data should often be handled with different compression techniques, utilizing best knowledge
about the data.
The ZPAQ standard format for compressed data is a container format which also holds the needed decompression algorithms. They can be specified through a context mixing model of several predictors with a bytecode
which computes the context data for them (used for arithmetic coding), a bytecode for postprocessing (used
for transformations or stand-alone algorithms) or any combination of both.
Arithmetic coding spreads symbols over a number range partitioned according to the probability distribution.
That way a likely to be encoded symbol can get a bigger part. The whole message is encoded at once from the
beginning. And every time a symbol was chosen the – possibly modified – probability distribution is applied
again to segment its part of the number range. Then for the next symbol this is the number range partition
to choose from. When the last symbol has been processed, the number range is very narrow compared to
the beginning and every number of it now represents the whole message. So the shortest in terms of binary
representation can be selected and a decoder can do the same steps again by choosing the symbol which has
this number in its range and applying then the partitioning to this range again according to the probability
distribution. In practice, one has either to use a special end-of-message symbol or specify the message length
before to define an end to this process.
The history which led to the development of ZPAQ shall shortly be explained in this chapter, followed by the
motivation of writing a compiler for ZPAQL and the research question of this work. In the following chapter
the whole picture of ZPAQ compression is visualized and the building blocks, i.e. context mixing and the
bytecode, are explained in detail. General theory of data compression and its limits are shortly noted on
afterwards. The main part is preceded by a short introduction to compiler construction, the implementation
language Rust and the source language Python. One chapter outlines the conditions and difficulties of
ZPAQL as a compiler target. The following chapters cover the chosen Python-subset (6), the developed API
and compiler internals (7), example programs (8) and finally the evaluation (9).
References to compressors and project websites or more detailed documentation and short remarks are
located in footnotes. All websites have been accessed until August 19th 2016. Academic publications are
listed in the bibliography.

2

1 Introduction

1.1 Preceding History
A big milestone being reached in data compression has been the Lempel-Ziv algorithm which is a form of
dictionary compression due to its consistence of backward references to data slices which have already been
seen. The area of statistical data compression was first stationary and Huffman optimal prefix codes can be
mentioned for entropy coding before arithmetic coding was known. Basically, few bits should be used for
frequent symbols but more for infrequent symbols. Entropy coding developed further with adaptive coding
from the mid-80s. One major innovation called PPM (Prediction by Partial Matching) usually works on
order-N byte contexts and predictions [1] whereas DMC (Dynamic Markov Compression) predicts bits [2].
Adaptive Huffman coding was developed as well. A decade later CTW (Context Tree Weighting) also utilizes
bit prediction but mixes the learned distributions of the order-N byte contexts [3].
The predecessors to the series of PAQ compressors, called P5, P6, P12, are based on a 2-layer neural network
with online training that predicts one bit for context inputs up to order-5. At that time they were on par
with variants of PPM concerning speed and compression ratio [4].
In PAQ1 the neural network is not used anymore as the probability and confidence of various models are
combined through weighted averaging. There is a non-stationary n-gram model up to order-8, a match model
for occurrences longer than 8 bytes in the last 4 MB, a cyclic model for patterns in rows and a whole word
model up to order-2. As statistical data the models mostly hold the bit counts of the contexts as one byte
in a hash table. At its release it could produce best results for a concatenation of the Calgary corpus (a data
compression benchmark) [5].
The models and their semi-stationary update were improved and PAQ2 introduced SSE (Secondary Symbol
Estimation) which improves a given probability by mapping it to a bit history. PAQ4 changed to adaptive
linear weighting and PAQ5 added another mixer. Many other versions have model improvements and added
special models or transforms. PAQAR, a fork of PAQ6, reworked the mixing architecture and could turn
models off. PAsQDa uses a transformation to map words to dictionary codes. PAQ6 variants were one after
the other leading in the Calgary challenge [6].
PAQ7 is a rewrite using neural network logistic mixing. Specifically it includes a JPEG model that predicts
the Huffman codes based on the DCT coefficients. PAQ8 variants come with more file models, dictionary
or x86 call address preprocessors or a DMC model. The PAQ8HP series won the Hutter Prize for Lossless Compression of Human Knowledge 1 about compressing a part of an English Wikipedia dump. Many
achievements were mainly made through special models for various file formats. The simpler LPAQ provides faster but less compression and later versions aim on text compression. PAQ9A has LZ (Lempel-Ziv)
precompression and cascaded ISSE (Indirect Secondary Symbol Estimation). The detailed history including
source code is tracked on the PAQ history website2 and in M. Mahoney’s book on data compression [7].

1

http://prize.hutter1.net/

2

The PAQ Data Compression Programs http://mattmahoney.net/dc/paq.html

1.2 Motivation

3

Parts of PAQ variants made it into the recent context mixing compressor cmix that leads the Large Text
Compression Benchmark 3 and the Silesia Open Source Compression Benchmark 4 but with around 30 GB
RAM usage5.
»ZPAQ is intended to replace PAQ and its variants (PAQ8, PAQ9A, LPAQ, LPQ1, etc) with similar or better
compression in a portable, standard format. Current versions of PAQ break archive compatibility with
each compression improvement. ZPAQ is intended to fix that.« 6
The development of the ZPAQ archiver started from early 2009 and defined the first version of The ZPAQ
Open Standard Format for Highly Compressed Data [8] after some months. The main idea is to move
the layout of the context mixing tree as well as the algorithm for context computation and the one for
postprocessing into the archive before each block of compressed data. There are nine components7 to
choose from for the tree, mostly context models coming from PAQ. In addition the algorithms are provided
as bytecode for a minimal virtual machine. Hence the algorithm implementation is mostly independent of the
decompressor implementation and compatibility is preserved when improvements are made. Also depending
on the input data an appropriate compression method can be chosen. The main program using libzpaq is
an incremental journaling backup utility which supports deduplication and encryption and provides various
compression levels using LZ77, BWT (Burrows-Wheeler Transform) and context models [9]. But there are
also reference decoders unzpaq and tiny_unzpaq, a simple pipeline application zpipe and a development
tool zpaqd8.
The fastqz compressor [10] for Sanger FASTQ format DNA strings and quality scores also uses the ZPAQ
format and was submitted to the Pistoia Alliance Sequence Squeeze Competition9.

1.2 Motivation
The development of ZPAQ continued specially for the use case of the incremental archiver program. But
the appearance of new algorithms for ZPAQ reached a rather low level, as well as the number of authors10
despite the fact that it offers a good environment for research about context mixing methods and crafting
of special solutions for use cases with a known type of data because one can build upon existing parts. The
leading reason could be that the assembly language ZPAQL with its few registers is not very accessible and
programs are hard to grasp or get easily unmanageable when complex tasks like parsing a header should be
accomplished. Therefore, the first question is whether another language can support ZPAQ’s popularity.

3

http://mattmahoney.net/dc/text.html

4

http://mattmahoney.net/dc/silesia.html

5

http://www.byronknoll.com/cmix.html

6

http://mattmahoney.net/dc/zpaq.html

7

See chapter 2.2 or http://mattmahoney.net/dc/dce.html#Section_437

8

http://mattmahoney.net/dc/zpaqutil.html

9

http://www.pistoiaalliance.org/projects/sequence-squeeze/

10

The majority of available configurations is listed on http://mattmahoney.net/dc/zpaqutil.html

4

1 Introduction

If that is the case, then a compiler for a well-known programming language could help to overcome the
obstacle of learning ZPAQL for implementing new algorithms.
The second question is whether the design decisions of the ZPAQ specification allow for arbitrary compression algorithms to be used with ZPAQ, even if they bring their own encoder or a dictionary or whether ZPAQ
is rather meant to be a platform for algorithms that use the predefined prediction components like (I)CM
and (I)SSE11 together with the built-in arithmetic coder.

1.3 Research Question
As an approach towards these questions mentioned above this work wants to contribute a compiler that
emits ZPAQL for a subset of the popular Python programming language. The subset should be oriented to
the data types of the ZPAQL virtual machine. The architecture and operation of the Python code should
still maintain similarity to the ZPAQL execution workflow to avoid abstractions. That means only integers,
no objects, floating-point numbers or strings, but the ability to address the two memory sections of the VM
as arrays. Running the Python code should be possible as usual which helps to keep debugging out of the
ZPAQL VM.
All this would ease the development of new algorithms and discover limitations of the current ZPAQ standard. An example for a new algorithm should be provided by developing a model for uncompressed PNM
image data which should be compared to other lossless image compressors.
As an example for a complex all-purpose algorithm the recent Brotli compression algorithm[11] will be
brought to ZPAQ. It was proposed for HTTP2 compression, includes a dictionary and combines LZ77, Huffman coding and order-2 context modeling. This is a challenge because it has to be solely implemented in
the postprocessing step and also needs memory management.
The quality of the compiler will be evaluated by comparing to an existing hand-written implementation of a
LZ compressor. Design decisions of the compiler and difficulties faced will be discussed.

11

(Indirect) context model and (indirect) secondary symbol estimation, four of the nine ZPAQ components.

2 The ZPAQ Standard Format for Compressed Data
This chapter gives an introduction to the ZPAQ archive specification in the current version 2.06. A small use
case is explained as well as the needed commands. Then the context mixing components and the language
ZPAQL are presented. Finally, two real-world examples are explained.

2.1 ZPAQ Specification and Working Principle
The Level 1 specification of this container format required the data always to be encoded with the arithmetic
coder and at least one predictor. A backwards incompatible change leading to Level 2 was to allow raw data
to be stored and thus no prediction component to be used, as needed for incompressible data or standalone
postprocessor algorithms e.g. a fast LZ variant [8]. It also defines a standard encryption for the whole archive
file and introduces an append-only journaling mode for incremental backups and deduplication on top of the
streaming format which is still the basis of the archive. These features are out of scope for this work and
therefore the focus is on the compression architecture and the virtual machine.
It is only specified what a valid archive is and how decompression takes place (nevertheless, probability
and thus context computation have to be symmetric for compression and decompression with an arithmetic
coder). In case of ambiguity in the specification there is the reference implementation unzpaq1, a tiny
version2 of it and the more mature library libzpaq that is used by the zpaq archiver3, the zpaqd development
tool4 or as plug-in for file archivers and incorporates a x86/64 JIT compiler for ZPAQL.
»The ZPAQ open standard specifies a compressed representation for one or more byte (8 bit value) sequences. A ZPAQ stream consists of a sequence of blocks that can be decompressed independently. A
block consists of a sequence of segments that must be decompressed sequentially from the beginning of
the block. Each segment might represent an array of bytes in memory, a file, or a contiguous portion of a
file.« [8]
A block header has no information on the length of the block because like for segments an end marker is
used. Memory requirements for the two bytecodes hcomp and pcomp are defined in the header. It is noted

1

http://mattmahoney.net/dc/unzpaq206.cpp

2

http://mattmahoney.net/dc/tiny_unzpaq.cpp

3

http://mattmahoney.net/dc/zpaq715.zip

4

http://mattmahoney.net/dc/zpaqd715.zip

6

2 The ZPAQ Standard Format for Compressed Data

whether arithmetic coding is used and what predicting components make up the context mixing tree. Each
component has arguments also determining memory use. If needed the bytecode hcomp is embedded to
compute context data for the components of the context mixing tree for each byte. All components give
bit predictions for the partially decoded byte (these are passed upwards the tree) and are trained afterwards
with the correct bit which was decoded based on the root (i.e. the last) node probability for each bit.
The optionally arithmetic coded data which comes from all segment content (not the segment filename or
comment) in the block can start with an embedded pcomp bytecode or declare that no pcomp bytecode
is present. Therefore, the hcomp section can already be used for context computation to compress the
pcomp bytecode (0 for empty or 1 followed by the length and the bytecode). The pcomp code is used for
postprocessing, may it be a simple transform or the decompression of LZ codes. It gets each decoded byte
as input and outputs a number of bytes not necessarily equal to the input.
That means the four combinations for a block are in total no compression, only context mixing with arithmetic coding, only postprocessing the stored data or context mixing with subsequent postprocessing (from
the decompressor perspective). The chosen selection applies for all (file) segments in the block.
The following charts illustrate the named parts and their relation to each other for a sample compression use
case. The transform for x86 machine code enhances compressibility by converting relative to static addresses
after each CALL and JMP instruction (0xE8 and 0xE9). It is applied on the two input files, a x86 executable
binary and shared library. Therefore a ZPAQL pcomp program needs to be supplied in the archive block
to revert that transform. Encoding takes place based on the probability distribution of 1 and 0 for each bit
of the current byte as they are provided as prediction by the root node of the simple context mixing tree.
The hcomp program is loaded into the ZPAQL VM and computes contexts for the two components. The
ISSE maps the context to a bit history which is used as context for a learning mixer that should improve the
probability provided by the first component, a CM (Context Model) which should learn good predictions for
the given context. The whole model and the hcomp bytecode are also embedded into the archive block.
The two files are stored as two segments in the block (like a ”solid” archive). Because the preprocessor might
be any external program or also included in the compressing archiver and is of no use for decompression it
is therefore not mentioned in the archive anymore.

2.1 ZPAQ Specification and Working Principle

7

Figure 2.1: Possible compression scheme

Decompression takes place in reverse manner and hcomp is loaded into the ZPAQL VM to compute the
context data for the components of the model. They supply the predictions to the arithmetic coder and are
corrected afterwards. For the reverse transform of each segment pcomp is read from the decoded stream and
loaded in another VM. Then the two segments follow in the decoding step and go through the postprocessing
transform before they are written out as files.

Figure 2.2: Accompanying decompression

The tool zpaqd only supports the streaming format and can be used to construct this example setup by writing
a configuration file for it and then adding two files as segments into a block. But beside the algorithms that are
already defined for compression in libzpaq for the levels 1 to 5 (LZ77, BWT and context mixing) it also offers
the ability to specify a customized model (E8E9, LZ77 transformations or also word models are supported)
given as argument, so that the above configuration can also be brought to life with something like zpaq
a [archive] [files] -method s8.4c22.0.255.255i3 (denotation documented in libzpaq.h and the

8

2 The ZPAQ Standard Format for Compressed Data

zpaq man page5). Here the first 8 accounts for 28 = 256 MB blocks, so that both segments should fit into
one block (yet the zpaq application uses the API in a way that creates an additional block), then an order-2
CM and an order-3 ISSE are chained. The resulting configuration including the two ZPAQL programs stored
in the archive can be listed with zpaqd l [archive].
For a more general view c.f. the compression workflow of the zpaq end user archiver as described in the
article mentioned [9]. It selects one of its predefined algorithms based on their performance for the data and
uses deduplication through the journaling format.

2.2 Context Mixing: Components and Context Data
The way the mixing takes place has evolved from the neural network approach in P5 over weighted averaging
from PAQ1 and adaptive linear weighting to logistic mixing in PAQ7 (like in a neural network and instead of
back propagation the weights are updated). In ZPAQ the probabilities are also handled in the logistic domain
𝑝

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑝) = 𝑙𝑛(1−𝑝) as output of the predicting components and can be averaged or refined by other

components before the output of the last component is transformed 𝑠𝑞𝑢𝑎𝑠ℎ(𝑥) = 𝑠𝑡𝑟𝑒𝑡𝑐ℎ−1 (𝑥) =

1
1+𝑒−𝑥

to

be used in the arithmetic coder to code one bit [7].
ZPAQ defines nine components. Up to 255 of them can be used in a model but only linear trees can be
constructed as mixing network i.e. when they are listed, they can only refer to predictions of preceding
components. The last one listed is the top node [8]. They get their context data input through computation
in hcomp. To supply the component with a higher order context, a rotating history buffer needs to be
maintained by hcomp. Now the components are listed without their arguments and internals which can be
found in the specification [8].
CONST is the most simple and gives a fixed prediction. It does not receive context data.
CM is a direct context model that holds counts of zeros/ones and a prediction for each of the eight bits
expected in the specified context. The counts are used to update the prediction to reduce the error. The
given context data is often a hash (and collisions can hurt compression). Also the partially decoded byte is
expanded to nine bits and XORed with the context after coding each bit, so that the next bit’s prediction is
accessed in the table.
ICM is an indirect context model consisting of a hash table to map the given context and the partially
decoded byte to a bit history which is then mapped to a prediction like in a direct context model. Histories
are counts of 1 and 0 and represented by states (explained in [7], chapter 4.1.3. Indirect Models) and
adjusted after the prediction to a better fitting state. The prediction is also updated.

5

http://mattmahoney.net/dc/zpaqdoc.html

2.3 ZPAQL: Virtual Machine and Instruction Set

9

MATCH is a model that takes the following byte of a found string match as prediction until a mismatch
happens. Therefore it keeps its own history buffer and the prediction is also varied depending on the length
of the match. The match is found based on the (higher order) context hash input. This works because the
search does not take place in the history buffer, but a table maps each context hash input to the last element
in the history buffer.
AVG outputs a non-adaptive weighted average of the predictions of two other components. It does not
receive context data.
MIX maps a context and the masked partially decoded byte to weights for producing an averaged prediction
of some other components. Afterwards the weights are updated to reduce the prediction error.
MIX2 is a simpler MIX and can only take two predictions as input.
SSE stands for secondary symbol estimation (Dmitry Shkarin, also known as Adaptive Probability Map in
PAQ7 or LPAQ) because it receives a context as input and takes the prediction of another component which
is then quantized. For the given context this quantized prediction and the next closest quantization value
are mapped to predictions which result in an interpolation of both. Initially this map is an identity, but
the update step corrects the prediction of the closer-to-original quantized value the same way as in the CM
update phase.
»A typical place for SSE is to adjust the output of a mixer using a low order (0 or 1) context. SSE components
may be chained in series with contexts typically in increasing order. Or they may be in parallel with
independent contexts, and the results mixed or averaged together.« [7]
ISSE is an indirect secondary symbol estimator that, as an SSE, refines the prediction of another component
based on a context which is mapped to a bit history like in an ICM. That bit history is set as context for an
adaptive MIX to select the weights to combine the original prediction with a fixed prediction.
»Generally, the best compression is obtained when each ISSE context contains the lower order context of
its input.« [7]

2.3 ZPAQL: Virtual Machine and Instruction Set
At the beginning of each block the two bytecodes hcomp and pcomp, if needed, are loaded to a virtual
machine for each. It consists of the program counter 𝑃𝐶, 32-bit registers 𝐴, 𝐵, 𝐶 and 𝐷, an 1-bit condition
flag 𝐹, 256 32-bit registers 𝑅0 …𝑅255 and the arrays 𝑀 (8-bit elements) and 𝐻 (32-bit elements). Initially, all
registers and arrays hold 0. The size of 𝐻 and 𝑀 is defined in the block header along with the information
which context-mixing components are used.
For each encoded or decoded byte hcomp gets run to set the contexts for the components. The context
data for a components 𝑖 < 256 has to be stored in 𝐻[𝑖]. As first input hcomp sees whether a postprocessor

10

2 The ZPAQ Standard Format for Compressed Data

is present and if yes, then its length and bytecode. Afterwards the data of the segments is coming, without
any separation. Except for the 𝑃𝐶 which is set to 0 and the 𝐴 register which is used for the input all state
is preserved between the calls.
The postprocessor pcomp is run for each decoded byte of the block to revert the preprocessing and puts out
the data via an instruction. After each segment it is invoked with 232 − 1 as input to mark the end.
There is an assembly language for the bytecode which is also used in the table describing the corresponding
opcodes in the specification [8]. In this assembly language whitespace can only occur between opcode bytes
in order to visualize that a=b is a 1-byte opcode while a= 123 is a 2-byte opcode. Comments are written in
brackets.
Operations on the 32-bit registers and elements of 𝐻 are 𝑚𝑜𝑑 232 and interpreted as positive numbers in
comparisons. Indexes access into 𝑀 and 𝐻 is 𝑚𝑜𝑑 𝑚𝑠𝑖𝑧𝑒 or 𝑚𝑜𝑑 ℎ𝑠𝑖𝑧𝑒 and denoted as *B for 𝑀[𝐵], *C for
𝑀[𝐶] and *D for 𝐻[𝐷]. Because 𝑀 holds bytes operations on *B and *C are 𝑚𝑜𝑑 256 and swapping via
B*<>A or C*<>A alters only the lower byte of 𝐴 [8].

Instructions

Semantics and Constraints

error

cause execution to fail

X++

increment X by 1 (X is one of A, B, C, D, *B, *C, *D)

X--

decrement X by 1

X!

flip all bits

X=0

set X to 0

X<>A

swap (X is not A)

X=X

set X to X

X= N

set X to 0 <= 𝑁 <= 255

A+=X

add X on A

A-=X

subtract X from A

A*=X

multiply A by X

A/=X

divide A by X (set 𝐴 = 0 if 𝑋 = 0)

A%=X

𝐴 = 𝐴 𝑚𝑜𝑑 𝑋 (set 𝐴 = 0 if 𝑋 = 0)

A&=X

binary AND with X

A&~=X

binary AND with flipped bits of X

A|=X

binary OR with X

A^=X

binary XOR with X

A<<=X

bitwise left shift of A by 𝑋 𝑚𝑜𝑑 32 bits

A>>=X

bitwise right shift of A by 𝑋 𝑚𝑜𝑑 32 bits

2.3 ZPAQL: Virtual Machine and Instruction Set

A+=

N, A-=

N,

A*=

N, A/=

N,

A%=

N, A&=

N,

11

same as previous instructions but with 0 <= 𝑁 <= 255

A&~= N, A|= N,
A^= N, A<<= N,
A>>= N
A==X

𝐹 = 1 if 𝐴 = 𝑋 otherwise 𝐹 = 0

A<X

𝐹 = 1 if 𝐴 < 𝑋 otherwise 𝐹 = 0

A>X

𝐹 = 1 if 𝐴 > 𝑋 otherwise 𝐹 = 0
N, A<

N,

same as above but with 0 <= 𝑁 <= 255

N, B=R

N,

set A, B, C or D to 𝑅𝑁

A==
A> N
A=R

C=R N, D=R N
R=A N

set 𝑅𝑁 to A

HALT

ends current execution of the program

OUT

output 𝐴 𝑚𝑜𝑑 256 in pcomp, ignored in hcomp

HASH

𝐴 = (𝐴 + 𝑀[𝐵] + 512) ⋅ 773

HASHD

𝐻[𝐷] = (𝐻[𝐷] + 𝐴 + 512) ⋅ 773

JMP I

add −128 <= 𝐼 <= 127 to PC relative to the following instruction, so 𝐼 = 0 has
no effect and 𝐼 = −1 is an endless loop (in the specification a positive N is used, so
𝑃𝐶𝑓 𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 += ((𝑁 + 128) 𝑚𝑜𝑑 256) − 128)

JT N

jump if 𝐹 = 1

JF N

jump if 𝐹 = 0

LJ L

𝑃𝐶𝑓 𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝐿 with 0 <= 𝐿 < 216 (in the specification written as LJ N M because

it is a 3-byte instruction with 𝑃𝐶𝑓 𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝑁 + 256 ⋅ 𝑀)
Beside the opcodes libzpaq also supports using helper macros like if(not)? … (else)? … endif, the
long jump versions if(not)?l … (elsel)? … endifl and do … (while|until|forever) which will
be converted to conditional jump opcodes. An if-block is executed if 𝐹 = 1, the while-jump is executed if
𝐹 = 1, an until-jump is executed if 𝐹 = 0. So that means the test for the condition has to be written before

the macro: a> 255 if … endif. The statements can also be interweaved, e.g. write a do-while-loop or a
continue-jump as do … if … forever endif.
In a ZPAQ config file the two sections for hcomp and pcomp are written behind the context mixing model
configuration. The pcomp section is optional. Comments can appear everywhere within brackets.

12

2 The ZPAQ Standard Format for Compressed Data

Syntax: (where 𝐼 < 𝑁 and 2𝐻𝐻 , 2𝐻𝑀 , 2𝑃𝐻 and 2𝑃𝑀 define the size of 𝐻 and 𝑀 for each section)
comp HH HM PH PM N
(I COMPONENT (ARG)+)*
hcomp
(ZPAQL_INSTR)*
halt
(pcomp (PREPROCESSOR_COMMAND)? ;
(ZPAQL_INSTR)*
halt
)?
end

2.4 Examples: A simple Context Model and LZ1 with a Context Model
The following example configuration is based on fast.cfg from the utility site6 and can be used for text
compression and adaptively combines (independently of contexts, just based on the success of the last prediction) the prediction of a direct order-1 context model with the prediction of a order-4 ISSE which refines
the prediction of a order-2 ICM. The arguments for the components are documented in the specification [8].

1

comp 2 2 0 0 4 (hh hm ph pm n)
(where H gets the size of 2^hh in hcomp or 2^ph in comp ,
M 2^hm or 2^pm and n is the number of
context -mixing components)

6

0 cm 19 4

(will get an order 1 context)

1 icm 16

(order 2, chained to isse)

2 isse 19 1 (order 4, has reference to ICM component 1)
3 mix2 0 0 2 24 0 (moderate adapting mixer between CM and ISSE
based on which predicts better , no contexts even for bits)
(ICM and ISSE part adapted from fast.cfg)
11

hcomp
r=a 2 (R2 = A, input byte in R2)
d=0
a<<= 9 *d=a (H[D] = A) (set context to actual byte)
(leaving first 9 bits free for the partially decoded byte)
a=r 2 (A = R2)

16

*b=a (M[B] = A) (save input byte in rotating buffer)
(full M is used with pointer b)
a=0 hash (shortcut for A = (A + M[B] + 512) * 773)
b-- hash
d= 1 *d=a (order 2 hash for H[1])

21

b-- hash b-- hash
d= 2 *d=a (order 4 hash for H[2])
26

6

http://mattmahoney.net/dc/zpaqutil.html, config files with a ”post” instead of ”pcomp” are in the old format of the

Level 1 specification

2.4 Examples: A simple Context Model and LZ1 with a Context Model

13

(H[3] stays 0 as fixed context for MIX2)
halt (execution stops here for this input byte)
end

Listing 2.1: Example mfast.cfg without a pcomp section

To demonstrate the compression phases and parts involved in detail the LZ1 configuration from the utility
site is chosen, but also the BWT.1 examples are worth to look at.
The LZ1 configuration relies on a preprocessor lzpre.cpp which turns the input data into a compressed
LZ77-variant representation of codes for match copies and literal strings. This is further compressed through
arithmetic coding with probabilities provided by an ICM (indirect context model).
The contexts are always hashed as ℎ𝑎𝑠ℎ(ℎ𝑎𝑠ℎ(𝑎) + 𝑏) from two values 𝑎 and 𝑏 as follows. For the first byte
of an offset number of a match the length of the match and the current state (2…4, i.e. 1…3 bytes to follow
as offset number) are used as context. For the remaining bytes of an offset number (or a new code if no
bytes are remaining) the previous context and the current state (previous state - 1, i.e. 0…2 bytes to follow)
are used as context. For the first literal of a literal string the number of literals and the state 5 are used as
context. For the following literals the current literal and the state 5 are used as context. For a new code
after a literal string instead of a hash of the first value just 0 and the current state (1) are used as context.
The bytecode of pcomp is not specially handled.
To revert the LZ1 compression pcomp parses the literal and match codes and maintains a 16 MB = 224
byte buffer in 𝑀.
(lz1.cfg
3

(C) 2011 Dell Inc. Written by Matt Mahoney
Licensed under GPL v3, http://www.gnu.org/copyleft/gpl.html)
comp 0 0 0 24 1
0 icm 12 (sometimes ”0 cm 20 48” will compress better)

8

hcomp
(c=state: 0=init , 1=expect LZ77 literal or match code ,
2..4= expect n-1 offset bytes ,
5..68= expect n-4 literals)
b=a (save input)

13

a=c a== 1 if (expect code ccxxxxxx as input)
(cc is number of offset bytes following)
(00 xxxxxx means x+1 literal bytes follow)
a=b a>>= 6 a&= 3 a> 0 if
a++ c=a (high 2 bits is code length)
*d=0 a=b a>>= 3 hashd

18

else
a=b a&= 63 a+= 5 c=a (literal length)
*d=0 a=b hashd
endif
23

else
a== 5 if (end of literal)
c= 1 *d=0

14

2 The ZPAQ Standard Format for Compressed Data

else
a== 0 if (init)
c= 124 *d=0 (5+ length of postprocessor)

28

else (literal or offset)
c-(model literals in order 1 context , offset order 0)
a> 5 if *d=0 a=b hashd endif
endif

33

endif
endif
(model parse state as context)
38

a=c a> 5 if a= 5 endif hashd
halt
pcomp ./lzpre c ; (code below is equivalent to ”lzpre d”)
a> 255 if (end of segment)
b=0 d=0

43

(reset , is last command before halt)

else
(LZ77 decoder: b=i, c=c d=state r1=len r2=off
state = d = 0 = expect literal or match code
1 = decoding a literal with len bytes left
2 = expecting last offset byte of a match
3,4 = expecting 2,3 match offset bytes

48

i = b = position in 16M output buffer
c = c = input byte
len = r1 = length of match or literal
off = r2 = offset of match back from i
53

Input format:
00llllll: literal of length lllllll =1..64 to follow
01lllooo oooooooo: length lll=5..12, offset o=1..2048
10llllll oooooooo oooooooo: l=1..64 offset =1..65536
11llllll oooooooo oooooooo oooooooo: 1..64, 1..2^24)

58

c=a a=d a== 0 if
a=c a>>= 6 a++ d=a
a== 1 if (state?)
a+=c r=a 1 a=0 r=a 2 (literal len=c+1 off=0)
else
a== 2 if a=c a&= 7 r=a 2 (short match: off=c&7)

63

a=c a>>= 3 a-= 3 r=a 1 (len=(c>>3) -3)
else (3 or 4 byte match)
a=c a&= 63 a++ r=a 1 a=0 r=a 2 (off=0, len=(c&63) -1)
endif
68

endif
else
a== 1 if (writing literal)
a=c *b=a b++ out
a=r 1 a-- a== 0 if d=0 endif r=a 1 (if (--len==0) state =0)

73

else
a> 2 if (reading offset)
a=r 2 a<<= 8 a|=c r=a 2 d-- (off=off <<8|c, --state)
else (state==2, write match)
a=r 2 a<<= 8 a|=c c=a a=b a-=c a-- c=a (c=i-off -1)

78

d=r 1 (d=len)
do (copy and output d=len bytes)
a=*c *b=a out c++ b++
d-- a=d a> 0 while
(d=state =0. off , len don’t matter)

2.4 Examples: A simple Context Model and LZ1 with a Context Model

15

endif

83

endif
endif
endif
halt
88

end

Listing 2.2: lz1.cfg

For comparison a Python port for usage with the zpaqlpy compiler can be found in test/lz1.py. It differs
in processing the pcomp bytecode with the current opcode byte as context for the next.

3 Notes on Data Compression
Not all data can be compressed. Because if we build a – necessarily bijective1 – compressing scheme
𝑓 ∶

⋃

𝛴𝑖 →

0<𝑖≤𝑛∈ℕ

⋃

𝛴𝑖

0<𝑖≤𝑛∈ℕ

for strings 𝑚 ∈ 𝛴∗, |𝑚| ≤ 𝑛 to strings 𝑧 ∈ 𝛴, |𝑧| ≤ 𝑛 , starting from an identity, every time we remap an
input 𝑚1 , whereas 𝑓 (𝑚1) = 𝑧1 , to a shorter compressed representation 𝑧2 , whereas 𝑓 −1 (𝑧2) = 𝑚2 and
|𝑧2 | < |𝑧1 |, so that now 𝑓 ′ (𝑚1) = 𝑧2 and |𝑓 ′ (𝑚1)| < |𝑓 (𝑚1)|, we have to map 𝑚2 to 𝑧1 so that 𝑓 ′ (𝑚2) = 𝑧1

and indeed make this swap in order to maintain the bijection, ending up with |𝑓 ′ (𝑚2)| > |𝑓 (𝑚2)| because
|𝑧1 | > |𝑧2 |. So while 𝑓 ′ compresses 𝑚1 it expands 𝑚2 and this holds for each iteration when we change our

compression scheme.
Luckily, most data which is relevant to us and interesting for compression has patterns and other data where
we do not understand the patterns appears to be random and is out of scope for compression algorithms. If
we do not have any knowledge about the data except that its symbols are equally distributed with probability
𝑝𝑖 =

1
𝛴

for each symbol 𝑖, best we can do is to use an optimal code reaching the Shannon entropy as coding

length per symbol:
𝐻 = − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖
𝑖

For |𝛴| = 256 𝐻 would be 8 bit as usual and we can simply store the data instead of encoding it again.
In general, given that the distribution is known, we can choose e.g. a non-adaptive arithmetic encoder to
almost reach the limit of 𝐻 bits per symbol. But adaptive arithmetic coding with PPM and others could
even give a better average because the distribution is adjusted by exploiting patterns. Therefore, to craft a
well performing algorithm for the expected input data knowledge about the patterns is needed in order to
give good predictions and go beyond the Shannon entropy as average size.
To define the lower limit that can be reached the concept of algorithmic information or Kolmogorov complexity of a string is developed. Basically it is the length of the shortest program in a fixed language that produces
this string. The language choice only influences a constant variation because an interpreter could be written.
When comparing different compressors in a benchmark it is common to include the decompressor size in
the measurement because it could also hold data or generate it via computation.

1

We want to allow for every string to be compressed, resulting in the same number – because they have to differ – of compressed strings which also should be decompressible. Another common approach to prove that there is no universal lossless
compression is a counting argument which uses the pigeonhole principle.

17

Using this principle with ZPAQ and its pcomp section the first million digits of 𝜋 if form of the ~1 MB text
file pi.txt from the Canterbury Miscellaneous Corpus 2 can be compressed to a 114 bytes ZPAQ archive
which consists of no data stored and a postprocessing step which computes 𝜋 to the given precision and
outputs it as text3. This extreme case of the earlier mentioned knowledge about the data can serve as a
bridge between Kolmogorov complexity and adaptive arithmetic coding. For faster execution of the ZPAQ
model we only take the first ten thousand digits of 𝜋 . Normally the limit most compressors would stay
above (because the digits are equally distributed) is

𝐻
8

⋅ 10000 =

−10⋅(0.1⋅𝑙𝑜𝑔2 (0.1))
8

⋅ 10000 = 4153 byte

instead of 10 KB.
With a ZPAQ context model we can, instead of generating the digits in pcomp phase, also use the next
expected digit as context so that the predictor will quickly learn that e.g. character 3 comes in context
3. But prediction can not be 100 % for one symbol as other symbols could occur and there has to be a
probability greater zero assigned to them. Also whether the end of the message is reached is encoded as a
special symbol. So the range of the arithmetic encoder gets still narrowed when a perfectly predicted digit
is encoded, but on such a small level that still only 121 bytes are needed for the ZPAQ archive consisting
of the CM model configuration, hcomp bytecode and the arithmetically coded ten thousand digits of 𝜋 .
That shows that we can go much beyond the entropy limit down to Kolmogorov complexity by using
context modeling and adaptive arithmetic coding. And still the context model is usable for all input data in
opposition to computing 𝜋 in pcomp. The overhead of the fact that 100 % can not be used when predicting
seems to be linear for the message size and can be observed when compressing 50 or 200 MB zeros with a
CM, resulting in around 0.0000022 byte per input byte.

(pi10k.cfg 2016 Kai Lüke and Matt Mahoney
2

instead of generating the digits in pcomp phase , use the next expected digit as context
To compress: zpaqd cinst pi10k.cfg pi10k.zpaq pi10000.txt)
comp 0 14 0 0 1

(2^14 > 10000)

0 cm 13 0
7

hcomp
ifnot (only first run)
(Compute pi to 10000 digits in M using the formula:
pi=4; for (d=r1*20/3;d>0;--d) pi=pi*d/(2*d+1)+2;
where r1 is the number of base 100 digits.
The precision is 1 bit per iteration so 20/3

12

is slightly more than the log2 (100) we need.)
a= 100 a*=a r=a 1 (r1 = digits base 100)
a*= 7 d=a (d = n iterations)
*b= 4 (M=4)
do

17

(multiply M *= d, carry in c)
b=r 1 c=0
do
b--

22

2

http://corpus.canterbury.ac.nz/descriptions/#misc

3

http://mattmahoney.net/dc/pi.cfg

18

3 Notes on Data Compression

a=*b a*=d a+=c c=a a%= 10 *b=a
a=c a/= 10 c=a
a=b a> 0 while
27

(divide M /= (2d+1), remainder in c)
a=d a+=d a++ d=a
do
a=c a*= 10 a+=*b c=a a/=d *b=a
a=c a%=d c=a

32

a=r 1 b++ a>b while
a=d a>>= 1 d=a
(add 2)
b=0 a= 2 a+=*b *b=a

37

d-- a=d a== 0 until
halt
endif
a=*b a<<= 9 *d=a b++ (set context for expected digit taken from M)
halt

42

end

Listing 3.1: pi10k.cfg

Even if this configuration is usable for other input than 𝜋 it does not give good compression. It can be
merged with the general text model from Listing 2.1 and change between using the CM for order-1 contexts
and for the expected digits contexts every time the start of 𝜋 is detected until a mismatch is found. This
way all occurrences of 𝜋 are coded with only a few bits.

(mixed_pi2.cfg
use the next expected digit as context for CM or a general text model of fast.cfg
3

a MIX2 will select between them
To compress: zpaqd c mixed_pi2.cfg text_pi.zpaq text_with_appearance_of_pi.txt
)
comp 2 14 0 0 4

8

(2^14 > 10000)

0 cm 18 0

(order 1 or digits of pi)

1 icm 16

(order 2, chained to isse)

2 isse 19 1 (order 4)
3 mix2 0 0 2 24 0 (moderate adapting mixer between CM and ISSE based on which predicts
better)
hcomp
r=a 2
13

a=r 0
a== 0 if (only first run)
(Compute pi to 10000 digits using the formula:
pi=4; for (d=r1*20/3;d>0;--d) pi=pi*d/(2*d+1)+2;
where r1 is the number of base 100 digits.

18

The precision is 1 bit per iteration so 20/3
is slightly more than the log2 (100) we need.)
a= 100 a*=a r=a 1 (r1 = digits base 100)
a*= 7 d=a (d = n iterations)
*b= 4 (M=4)

23

do
(multiply M *= d, carry in c)

19

b=r 1 c=0
do
b-a=*b a*=d a+=c c=a a%= 10 *b=a

28

a=c a/= 10 c=a
a=b a> 0 while
(divide M /= (2d+1), remainder in c)
a=d a+=d a++ d=a

33

do
a=c a*= 10 a+=*b c=a a/=d *b=a
a=c a%=d c=a
a=r 1 b++ a>b while
a=d a>>= 1 d=a

38

(add 2)
b=0 a= 2 a+=*b *b=a
d-- a=d a== 0 until
c= 2 (point to 4 of 3.14)

43

a= 1
r=a 0
a<<= 14 a-- (last element of ring buffer)
b=a
a-= 4 (first element of ring bufer , pointer in r3)

48

r=a 3
halt (input 0 came from pcomp , also to restart c=2 is enough)
endif
(CM part)
53

d=0
a=r 2

a-= 48

c-a==*c
c++
58

if (pi: set context for expected digit)
a=*c c++ a<<= 1 a++ a<<= 9 *d=a (distinguish between pi number context and character
context by 1 bit for sure)
else (other:)
a=r 2 a<<= 10 *d=a c= 2 (set context to actual byte)
endif

63

(a in r2, lower border of ring buffer in r3)
(ICM and ISSE part adapted from fast.cfg)
a=r 2
*b=a a=0 (save in rotating buffer M)
hash b-d=a (save hash) a=r 3 a>b if b++ b++ b++ b++ endif a=d

68

hash d= 1 *d=a
b-d=a (save hash) a=r 3 a>b if b++ b++ b++ b++ endif a=d
hash b-d=a (save hash) a=r 3 a>b if b++ b++ b++ b++ endif a=d

73

hash d= 2 *d=a
halt
end

Listing 3.2: mixedpi2.cfg

20

3 Notes on Data Compression

For real-life use cases it is often not possible to give perfect predictions. Good contexts can help to bring
order into the statistics about previous data. Beside the manual approach heuristic context models can be
generated for data by calculating the data’s autocorrelation function [12] or as done in PAQ by recognizing
two-dimensional strides for table or graphical data.
Even compressed JPEG photos can be further compressed by 10% - 30% by predicting the Huffman-coded
DCT coefficients when using the decoded values as contexts (done in PAQ7-8, Stuffit, PackJPG, WinZIP [7]).
The ZPAQ configuration jpg_test2.cfg uses a preprocessor to expand Huffman codes to DCT coefficients
and later uses them as contexts4. The PackJPG approach continues to be developed by Dropbox under the
name lepton5 and supports progressive beside baseline JPEGs.
Overall modeling and prediction are an AI problem because e.g. for a given sentence start a likely following
word has to be provided or how a picture with a missing area is going to continue. Remarkable results
have been accomplished by using PAQ8 as machine learning tool for e.g. building a game AI with it serving
as a classifier, for interactive input text prediction, text classification, shape recognition and lossy image
compression [13].

4

http://mattmahoney.net/dc/zpaqutil.html

5

https://github.com/dropbox/lepton

4 Compilers, Rust and Python
Compilers and their parts covering the subproblems are mentioned here. Then the programming language
Rust which was used for the compiler development is shortly presented as well as Python as the source
language.

4.1 Classical Compiler Architecture
The task to translate a program from a source language into an equivalent program in the target language is
usually split into independent phases where each phase passes its result to the next phase (see [14], Figure
1.6). In most cases the target language is very low level, like machine instructions of a CPU. One variation
of a compiler structure including an intermediate representation language will be explained.
The tokenizer or lexer cuts the input stream into tokens which represent words/units of the source language
which are normally the allowed terminal symbols of the grammar. The parser reads the tokens in sequence
and fits them into nonterminals of the source language grammar by following the production rules until
all tokens are consumed and the start production is completed. On the way it generates an AST (Abstract
Syntax Tree) as semantic representation of the program in the source language. This completes the analysis
done in the frontend.
Synthesis takes place in the backend. The AST is traversed to generate IR (intermediate representation)
instructions. This step usually keeps track of variable names and their assignments in a symbol table. An
optimization pass can be applied to the IR. The code generator produces instructions in the target language
and they can be passed through optimization steps as well.
Checking for errors has to be done in every analysis step to find lexical errors in the tokenizer, syntactical
errors while parsing, type errors and others during semantic analysis.
If the target language is not the end product but only an assembly language than an assembler produces
object files which will be combined by a linker to a final executable program.
There are also preprocessors for the source language, multi-pass compilers and JIT (just-in-time) compilers
which are used in interpreters and translate only an often-used section of the source program during runtime
for a performance gain.

22

4 Compilers, Rust and Python

4.2 The Rust Programming Language
»Rust is a systems programming language focused on three goals: safety, speed, and concurrency. It
maintains these goals without having a garbage collector, making it a useful language for a number of use
cases other languages aren’t good at: embedding in other languages, programs with specific space and
time requirements, and writing low-level code, like device drivers and operating systems. It improves on
current languages targeting this space by having a number of compile-time safety checks that produce no
runtime overhead, while eliminating all data races. Rust also aims to achieve ‘zero-cost abstractions’ even
though some of these abstractions feel like those of a high-level language. Even then, Rust still allows
precise control like a low-level language would.« 1
The first stable 1.0 release of the Mozilla-sponsored language was in May 2015, the current version is 1.11
from August 2016. Pattern matching, definition of data structures and traits together with strong types bring
Rust close to functional languages like Haskell. A program can in most cases only be compiled if it is free
from crashes and undefined behavior unless explicitly a panic is allowed when an alternative result case of
a function is not handled. So sometimes there are many iterations until a program compiles, but then as a
gain there are assurances for the execution like memory safety instead of buffer overflows. But on the other
side one has to be aware of the flow and reference of data through variables and has to comply to the rules
imposed by the move semantics of the language, because the ownership model is the core for the safety
guarantees.
Part of the language is the definition of test functions for software testing and inline documentation which can
include test cases. As tooling the build system and package manager Cargo comes along with the compiler
rustc which is invoked by Cargo. The inline documentation can be extracted to HTML.
Because of the noted advantages it seems that Rust fits well for compiler construction and offers a pleasing
workflow once accustomed with its type system because of the more rare runtime errors leading to less
debugging.

4.3 The Python Programming Language
Python has been around for two decades now and is still representative for an easy to learn imperative
language with a simple syntax. It features dynamic types and a pragmatic approach to object orientation
with functional elements and closures. Freeing memory is done by reference counting and the language
is tightly coupled with the way it is interpreted. In order to fulfill a protocol/trait it relies on functions an
object needs to implement.

1

Book Introduction ”The Rust Programming Language”: https://doc.rust-lang.org/book/index.html

5 Considerations and Challenges with ZPAQL as
Target Language
The ZPAQL bytecode that runs on the virtual machine is executed for every input byte, from the beginning
i.e. the first instruction. Then 𝐴 is set to the input byte while all other state is maintained between the
executions. Also if running as hcomp section then the first elements of 𝐻 are not general purpose memory
but serve as input for the context mixing components. Execution in a ZPAQL VM is sequential with no
parallelism. Beside the defined size of 𝐻 and 𝑀 there is no heap memory allocation or stack available. If
dynamic memory allocation is wanted it has to be implemented on top of 𝐻 or 𝑀.
It is Turing-complete but the bytecode size is restricted to around 64 KB (in hcomp few bytes less as the
context model needs to be defined before). Also there is no keyword for a data section defined in the
ZPAQL assembly language and it would be of no use as the bytecode content itself is not addressable and
also unmodifiable. But program data could be prepended before the stored data and retrieved by reading
in hcomp or pcomp and discarded while pcomp generates the output. If data should just be accessed by
hcomp it could also be stored as a skipped part of the pcomp bytecode as this is seen by hcomp before the
decoded data. This could also be used if an interpreter is written in ZPAQL.
The jump instructions only support a fixed and not a variable destination. That means instead of jumping to
a return address which the caller passes to the function the return can only be achieved through an identifier
for a jump table with predefined jump points.
The instruction set is rather simple and aimed at 32-bit integers. To keep expensive abstractions away, the
source language should e.g. not include floating point numbers or 64-bit integers. Most calculations have
to be done using register 𝐴 as accumulator because the others lack advanced instructions.
There is no instruction for reading the next byte or saying that context computation has finished - the
program needs to halt and is then executed again from the beginning. Therefore, additional runtime code is
needed to continue execution where it stopped if e.g. convenient input reading should be allowed without
disrupting the program flow or the finished computation of context data should be signaled.
It seems to be a viable plan to keep the organizational structure of a source program close to the resulting
ZPAQL program but with added convenience through a runtime API which is anyway needed for input and
output. Instead of introducing special functions to set the context data as first elements in 𝐻 , 𝐻 and also

24

5 Considerations and Challenges with ZPAQL as Target Language

𝑀 can just be fully exposed as data structure in the source language and also be used as arrays for other

means with low abstraction costs. This keeps the structure of handwritten ZPAQL programs close to those
in the source language. But in order to keep variables in a stack, 𝑅 with its 256 elements is not enough, so
expanding 𝐻 seems to be a good solution. To model the repetitive execution of hcomp and pcomp they
could be defined as functions in the source program (think main function) and it would also be possible to
pass the input byte as argument which also keeps the similarity to a handwritten ZPAQL source.
As the runtime code abstractions for providing the mentioned read-API are not too high, the similarity to
original ZPAQL files is more a cosmetic design decision. And if a context-set-API which halts and continues
execution through runtime code is present then hcomp and pcomp functions could be replaced by main
functions which are entered only once and thus hide the fact that execution starts from the beginning for
every input byte. Still dynamic memory management on top of 𝐻 and 𝑀 seems to be costly and thus
departing to far from ZPAQL and adding more complicated data structures could hurt performance too
much.
It would be helping if the source program is standalone executable without being compiled to ZPAQL to
ease debugging by staying outside the ZPAQL VM as long as possible.
Before ZPAQL instructions are generated by the compiler it would be helpful if most complicated operations
are solved on the IR level already, like the saving, restoring and other memory management.

6 Selection of the Python-subset as Source
Language
Considerations are mentioned again before the chosen subset is presented together with the API functions
and organizational source code constraints. Then the grammar is listed with a short note on the behavior of
elements.

6.1 Decision on the Feature Set
Based on the preceding thoughts the input should be a single Python file containing both the code for hcomp
and pcomp as functions which could also call other functions but no imports are allowed. The compiler
should not deal with strings, lists, arbitrary big numbers, classes, closures and (function) objects but only
support a reduced set with variables having 32-bit integer values. The context model should be defined
like in a ZPAQL configuration and the predefined arrays 𝐻 and 𝑀 should be exposed as well as the size
exponents ℎℎ, ℎ𝑚, 𝑝ℎ, 𝑝𝑚 and 𝑛 as number of components used.
API functions out(a) for the pcomp out instruction and read_b() to read the next input byte by halting
and returning to the current state of execution should be provided. As well as helpers if a dynamic memory
management for additional arrays is implemented in Python on top of 𝐻 and 𝑀. This API needs to be
included as corresponding ZPAQL runtime in the output of the compiler. The Python runtime should also
allow execution as standalone program with a similar interface to the zpaqd development tool which can
run pcomp and hcomp on a given input.
All the code segments need to be separated, namely the context model definition and other common definitions/functions, pcomp and hcomp code with their variables and functions and then the runtime API and
finally the code for standalone execution. Thus a template approach was chosen which uses comment lines
as separation marks. Then the compiler extracts only the sections it needs to compile.

26

6 Selection of the Python-subset as Source Language

source.py Template Sections

Editable?

Definition of the ZPAQ configuration header data (memory size, context mixing com-

yes

ponents) and optionally functions and variables used by both hcomp and pcomp
API functions for input and output, initialization of memory

no

function hcomp and associated global variables and functions

yes

function pcomp and associated global variables and functions

yes

code for standalone execution of the Python file analog to running a ZPAQL configu-

no

ration with zpaqd r [cfg] p|h
Of course it could be organized in a different way that is more appealing based on the alternatives mentioned
in the previous chapter e.g. with two more idiomatic Python files for hcomp and pcomp without special
entry functions and the runtime in a different file which either imports the two files or vice versa.

6.2 Grammar and Semantics
The Python grammar as specified in the language reference1 has been simplified where possible. It still
allows dictionaries and strings, however not for program code but just for the definition of the context
mixing components. Tuples, unpacking, lists and list comprehensions, for-loops, with-blocks, support for
async-coroutines, import, try/raise/except, decorators, lambda expressions or named arguments have been
removed.
Not all what is parsed is allowed as source code, e.g. nonlocal, dicts, strings or the @-operator for matrix
multiplication but therefore a better error message can be provided than just a parser error. The names of
the productions have been kept even if they are simplified. It would be best if the grammar is expanded to
parse full Python again and let the code generator decide what to support.
Grammar with NUMBER, NAME, ”symbols”, NEWLINE, INDENT, DEDENT or STRING as terminals

1

Prog

(NEWLINE* stmt)* ENDMARKER?

funcdef

”def” NAME Parameters ”:” suite

Parameters

”(” Typedargslist? ”)”

Typedargslist

Tfpdef (”=” test)? (”,” Tfpdef (”=” test)?)* (”,” (”**” Tfpdef)?)?

Tfpdef

NAME (”:” test)?

stmt

simple_stmt | compound_stmt

simple_stmt

small_stmt (”;” small_stmt)* ”;”? NEWLINE

small_stmt

expr_stmt, pass_stmt, flow_stmt, global_stmt, nonlocal_stmt

expr_stmt

(store_assign augassign test) | ((store_assign ”=”)? test)

https://docs.python.org/3/reference/grammar.html

6.2 Grammar and Semantics

store_assign

NAME (”[” test ”]”)?

augassign

”+=” | ”-=” | ”*=” | ”@=” | ”//=” | ”/=” | ”%=”
”&=” | ”|=” | ”^=” | ”<<=” | ”>>=” | ”**=”

pass_stmt

”pass”

flow_stmt

break_stmt | continue_stmt | return_stmt

break_stmt

”break”

continue_stmt

”continue”

return_stmt

”return” test

global_stmt

”global” NAME (”,” NAME)*

nonlocal_stmt

”nonlocal” NAME (”,” NAME)*

compound_stmt

if_stmt | while_stmt | funcdef

if_stmt

”if” test ”:” suite (”elif” test ”:” suite)* (”else” ”:” suite)?

while_stmt

”while” test ”:” suite (”else” ”:” suite)?

suite

simple_stmt, NEWLINE INDENT stmt+ DEDENT

test

or_test

test_nocond

or_test

or_test

and_test (”or” and_test)*

and_test

not_test (”and” not_test)*

not_test

comparison | (”not” not_test)

comparison

expr (comp_op expr)*

comp_op

”<” | ”>” | ”==” | ”>=” | ”<=” | ”!=” | ”in” | ”not” ”in” | ”is” | ”is” ”not”

expr

xor_expr (”|” xor_expr)*

xor_expr

and_expr (”^” and_expr)*

and_expr

shift_expr (”&” shift_expr)*

shift_expr

arith_expr | (arith_expr (shift_op arith_expr)+)

shift_op

”<<” | ”>>”

arith_expr

term | (term (t_op term)+)

t_op

”+” | ”-”

term

factor (f_op factor)*

f_op

”*” | ”@” | ”/” | ”%” | ”//”

factor

(”+” factor) | (”-” factor) | (”~” factor) | power

power

atom_expr (”**” factor)?

atom_expr

(NAME ”(” arglist? ”)”) | (NAME ”[” test ”]”) | atom

atom

(”(” test ”)”) | (”” dictorsetmaker? ””) | NUMBER | STRING+ | ”...”
”None” | ”True” | ”False” | NAME

dictorsetmaker

dictorsetmaker_t (”,” dictorsetmaker_t)* ”,”?

dictorsetmaker_t

test ”:” test

arglist

test (”,” test)* ”,”?

27

28

6 Selection of the Python-subset as Source Language

The semantics of the language elements as described in the reference2 stay mostly the same, even if the
usable feature set is still reduced as stated before. In particular, one has to be aware of integer overflows
which are absent in Python but are present in ZPAQL and thus all computations are in ℤ4294967296 i.e.
𝑚𝑜𝑑 232 . Except for the bit shift operations with a shift of more than 32 bits. In this case the Python-subset

will do a shift by 𝑋 𝑚𝑜𝑑 32 bits. To achieve the semantics of (v << X) % 2**32 or (v >> X) % 2**32
with 𝑋 > 31 the resulting value should directly be set to 0 instead. Also / 0 and % 0 does not fail in ZPAQL
but results in a 0 value.
For a wrong Python input the current compiler specification might behave in a different way and even accept
it without a failure. Therefore it is required that the input is a valid Python program which runs without
exceptions.
This requirement is also important because the current compiler does not check array boundaries, so
index%len(hH) or index&((1<<hh)-1) should be used e.g. for a ring buffer because after the original

size of 𝐻 there comes the stack. If run as plain Python file, an exception is thrown anyway then because it
checks array boundaries.

2

https://docs.python.org/3/reference/index.html

7 Design of the Compiler in Rust
The source code for the zpaqlpy compiler is located at https://github.com/pothos/zpaqlpy and includes the test data and other files mentioned. This chapter is about the developed API the source file uses
and about the process of developing the compiler and its internals.

7.1 Exposed API
The 32- or 8-bit memory areas 𝐻 and 𝑀 are available as arrays hH, pH, hM, pM depending on being a
hcomp or pcomp section with size 2ℎℎ , 2ℎ𝑚 , 2𝑝ℎ , 2𝑝𝑚 defined in the header as available constants hh, hm,
ph, pm. There is support for len(hH), len(pH), len(hM), len(pM) instead of calculating 2ℎℎ . But

in general instead of using len() for dynamically allocated arrays as well, special functions like len_hH()
are used to visibly expose their types and do runtime checks already in Python. NONE is a shortcut for
0 − 1 = 4294967295.

Other functions

Description

c = read_b()

Read one input byte, might leave VM execution to get the next
input byte before return

push_b(c)

Put read byte c back, overwrites if already present (no buffer)

c = peek_b()

Read but do not consume next byte, might leave VM execution
to get the next input byte before return

out(c)

In pcomp: write c to output stream

error()

Execution fails with ”Bad ZPAQL opcode”

aref = alloc_pH(asize), …

Allocate an array of size asize on pH/pM/hH/hM

aref = array_pH(intaddr), …

Cast an integer address back to a reference

len_pH(aref), …

Get the length of an array in pH/pM/hH/hM

free_pH(aref), …

Free the memory in pH/pM/hH/hM again by destructing the array

If backend implementations addr_alloc_pH(size), addr_free_pH(addr), … are defined then dynamic memory management is available though the API functions alloc_pM and free_pM. The cast

30

7 Design of the Compiler in Rust

array_pH(numbervar) can be used to save a type check in ZPAQL at runtime. Also in plain Python the

cast from an address is needed after an array reference was itself stored into 𝐻 and thus became an address
number and is then retrieved as a number again instead of a reference. In general, there are no boxed types
but by context a variable is used as address.
The last addressable starting point for any list is 2147483647 == (1<<31) − 1 because the compiler uses
the 32nd bit to distinguish between pointers to 𝑀 and 𝐻 .
The provided implementations of addr_alloc_pM, addr_free_pM, … can be found in the template (run
./zpaqlpy --emit-template or see src/template.rs). The returned pointer is expected to point at the

first element of the array. One entry before the first element is used to store whether this memory section
is free or not. Before that the length of the array is stored, i.e. 𝐻[𝑎𝑟𝑟𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑒𝑟 − 2] for arrays in H and the
four bytes 𝑀[𝑎𝑟𝑟𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑒𝑟 − 5]…𝑀[𝑎𝑟𝑟𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑒𝑟 − 2] of the 32-bit length for arrays in 𝑀.
Beside these constraints the implementations are free how to find a free region. The example uses getter
and setter functions for the 32-bit length value as four bytes in 𝑀. For allocation it skips over the blocks
from the beginning until a sufficiently sized block is found. If this block is bigger then the rest of it is kept
free and might be merged with the next block if it is also free. That also happens when a block is freed
again, then it is even merged with the previous block if that is free.

7.2 Parser and Tokenizer
Tokens are known Python keywords and symbols like operators or brackets, names or strings and numbers as converted values. Initially the Python module tokenize was used through piping source code
in python3 -m tokenize -e and processing its output to build tokens as a Rust data structure
(see src/tok.rs). Later on the code commonly residing in /usr/lib/python3.5/tokenize.py and
/usr/lib/python3.5/token.py was ported to Rust (see src/rtok.rs) in order to be independent from

external calls. It is assumed that the input is UTF-8 without a BOM (Byte Order Mark).
The parser is built with a parser generator out of the grammar specification. It constructs the AST with each
production. The parser library lalrpop1 was chosen in LALR(1) recursive ascent mode for that purpose.
The elements of the produced AST are based on the abstract grammar of the Python module ast 2 but
simplified (see src/ast.rs) and give a structured representation of the source program. In fact it is not a tree
but a list of statements. They can be one of FunctionDef which holds the function body as list of statements,
Return, Assign and AugAssign which hold the expressions that are concerned, While and If which hold

their body and else-part as list of statements and the test as expression, Global, Pass, Break, Continue and
Expr which encapsulates an expression. These expressions can be one of BoolOpE to evaluate AND and OR

1

https://github.com/nikomatsakis/lalrpop

2

https://docs.python.org/3.5/library/ast.html#abstract-grammar

7.3 Grammar of the Intermediate Representation

31

over expressions, BinOp for evaluation of an arithmetic expression over two expressions, UnaryOpE for an
unary operation, Compare for comparisons over expressions, Call for a function call including arguments
as expressions, Num for an integer, NameConstant for True and False, Name for a variable or Subscript for
index access to an array variable. The precedence of and and or is resolved during parsing into a binary tree
of BoolOpE elements. Contrary to that one has to be aware that with Compare the semantics of a == b
== c and (a == b) == c differ, the middle operand is split up and passed to the next comparison. Their

results are evaluated and merged with and until the result can not be True anymore, so this was better left
to the IR generator.

7.3 Grammar of the Intermediate Representation
The IR was chosen to be close to ZPAQL but easier to write.

While ZPAQL has the registers

𝐴, 𝐵, 𝐶, 𝐷, 𝐹, 𝑅0…255 and arrays 𝐻 and 𝑀 the IR gives only control about 𝑅, 𝐻 and 𝑀 and no other

registers. There are no new data structures added. So the other registers can be used for address computation and temporary calculations when the IR is converted to ZPAQL. That means the temporary variables
t0…t255 of the IR are a direct mapping to registers 𝑅𝑖 . Because the input byte is in 𝐴 at the beginning of

hcomp/pcomp execution the IR relies on the guarantee that 𝑅255 = 𝐴 before the first instruction.

stmt

var ”=” var (op var)?
var ”=” uop var
”if” var ”goto” label
”ifN” var ”goto” label
”ifEq” var var ”goto” label (to be used for optimizations)
”ifNeq” var var ”goto” label
”goto” label
”:” label ”:”
”halt”
”error”
”out” var

var

t | ”H[” t ”]” | ”H[t0+” x ”]” | ”H[t252+” x ”]” | ”H[” x ”]” | ”M[” t ”]” | ”M[” x ”]” | x

op

”+” | ”-” | ”*” | ”/” | ”//” | ”%” | ”**” | ”<<” | ”>>” | ”|” | ”^”
”&” | ”or” | ”and” | ”==” | ”!=” | ”<” | ”<=” | ”>” | ”>=”

uop

”!” | ”~” | ”-”

t

”t0” | … | ”t255”

x

”0” | … | ”4294967295”

label

[a-z_0-9~A-Z]+

comment

”#…\n”

32

7 Design of the Compiler in Rust

The var on the left side of an assignment can not be a number. The operators or and and differ from the
binary versions | and & as they represent the semantics of Python or and and i.e. they evaluate to the original
value and not simply to the boolean choices of 1 and 0 for True and False while the binary operators use
bitwise AND and OR. Operator !v tests against v==0 while ~v inverts the bits.
The choices made might not be the best and a totally different IR is possible which could introduce variables
or stack operations. For efficiency it might be interesting to go into the direction of static single assignment
with linear scan register allocation or an algorithm with graph-coloring register allocation. Currently local
Python variables are on the stack and temporary variables are in 𝑅 because together they could be more
than 256 and anyway local variables need to be stored on stack before a call. But they could be joined in a
common pool and the current limit of maximum 256 temporary variables in 𝑅 could be widened by using
elements of 𝐻 as needed. Maybe even LLVM as a very popular IR could be used with its many optimization
passes available.

7.4 IR Generation and the Stack
Due to the reduced features in the subset the compilation of the Python source can be done in a similar way
a C source would be compiled. The local variables of a function are held on the stack which is produced by
expanding 𝐻 beyond its defined size for the configuration. Global variables are held in the beginning of the
stack. The temporary variables t0…t251 are used for intermediate or address computations whereas t0 is
the base pointer for the stack and t252 is a copy of the global base pointer. t255 holds the last input byte,
t254 the reading state and t253 the read byte for the API function read_b() which stops the execution

and returns to the caller with the newly acquired byte when the bytecode is run again.
The original size 𝑥 = 2ℎℎ of 𝐻 is extended to hold the stack of size 𝑦. To calculate a valid resulting size of
𝑦

2⌈𝑧⌉ ≥ 𝑥 + 𝑦 the formula 𝑧 = 𝑙𝑜𝑔2 (𝑥 + 𝑦) = 𝑙𝑜𝑔2 (𝑥) + 𝑙𝑜𝑔2 (1 + 𝑥) is used.

There are no IR instructions for calling a function or stack operations on 𝐻 , but there are helping meta
instructions. These will be converted to simple IR instructions and have been defined for handling blocks,
saving and loading variables on the stack in 𝐻 , calls and returns to comply to a calling convention, predefined
IR code sections for the runtime API and the jumping table to continue execution after a return. The initial
IR code is responsible to either call the Python functions hcomp(c)/pcomp(c) with the new input byte or
continue execution if it was interrupted through a read_b() API call. Also it sets the base pointer for the
first run and defines the API function read_b.
The function traverse() in src/gen_ir.rs generates IR instructions for the given (part of an) AST. It is
recursively used and consults the symbol table for free temporary variables, position of local variables and the
mapping of global variables. Also it uses the recursive function evaluate() which takes only an expression
part of an AST and returns IR instructions and the IR variable that holds the value after these instructions

7.5 Optimizations in the Intermediate Representation

33

have been executed. Returning the instructions makes testing easier. If pcomp(c)/hcomp(c) only contain
a pass then the whole pcomp/hcomp section is omitted.
The temporary variables have to be saved on the stack before a call. Also the current base pointer and then
the return ID for the jump table need to be saved there as part of the calling convention. The new base
pointer in t0 points at the return ID. Arguments passed come afterwards and the called function will address
them via 𝐻[𝑡0 + 𝑥]. On return the previous base pointer will be restored to t0 and the return ID is copied
in t2 for the jumper table while the return value is in t1 before the jump to the code for the jump table is
done in order to return after the call instruction.
It should be possible to treat local variables like temporary variables to reduce code size and stack usage by
a compiler flag. Also the calling convention could be changed to avoid the stack and globals could be stored
in tx.
For now the compiler passes IR code around as vectors (lists), but for a more idiomatic Rust style iterators
could be used.

7.5 Optimizations in the Intermediate Representation
Unused functions occupy space in the bytecode and hence are removed by searching for calls and if none is
found it can be removed. This is repeated until no function was removed anymore. Assignments which are
unused or could be merged into one assignment are not yet recognized.
During IR generation it is not known whether a temporary variable really needs to be saved on the
stack before a call or whether it is not in use afterwards anyway.

Therefore the helper macro in-

structions MarkTempVarStart and MarkTempVarEnd are inserted around each function scope. Saving and restoring temporary variables is done through the macros StoreTempVars{identifiers} and
LoadTempVars{identifiers}. The optimization pass goes through the IR instructions in reverse order to

reason about the lifetimes and removes the identifiers from the load and store macro instructions which are
not live i.e. referred to after the load.
Compiler books have much more to offer and there are many classical optimizations which could be looked
on for further improvements. Caching could be used and constant expressions evaluated during IR generation. This is just done for a row of assignments on allocated arrays in 𝑀.

7.6 ZPAQL Generation and Register Assignment
The IR was chosen to be easily convertible to ZPAQL by using the registers 𝐴, 𝐵, 𝐶 and 𝐷 to calculate
and move values between 𝐻 and 𝑅. Thus for the beginning a very simple but inefficient solution was

34

7 Design of the Compiler in Rust

taken. The function emit_zpaql() in src/gen_zpaql.rs takes IR code and yields ZPAQL code by calling
assign_var_to_a(var) for the operands (if needed saving one value from 𝐴 in 𝐶), and applying the

operator on them. The result is moved from 𝐴 to the target by calling assign_a_to_var(var). In order to
load a number in 𝐴 calc_number(value) is used and for values greater 255 multiple bit shifts are needed.
All of this helper functions emit ZPAQL code which is combined as result of each function in a similar way
to the IR generation.
Then a more advanced solution was chosen with pattern matching to avoid the ubiquitous transfer over 𝐴
and detect an augmented assignment like +=1 and simply increase the value at its location. Therefore the
helper function gen_loc_for_var() was introduced to get the location handle and the other helpers were
widened to operate with the notion of a location meaning registers or memory positions through pointers
instead of only 𝐴. Tracking recent values of variables in the registers or memory locations for reuse was also
helpful in order to produce less code output. Yet it is a more careful issue now to make changes because
the cache entries concerning the location and the variable need - at least - to be invalidated for a correct
output.
After the code generation a special optimization takes place to simplify byte assignments on arrays in 𝑀.
They have been produced in the IR generation if a row of successive assignments like in an initialization was
detected. Thus the pointer variable is always just increased and even not saved on 𝑅 until all assignments
are finished.
Resolving labels to positions for the jump destinations is done as last step before the ZPAQL assembly code
is written out. The opcode size for each instruction is known and thus the label’s positions can be hold in
a hash table. The second pass through the code can then replace the virtual GoTo placeholder instruction
with the real long jump.

7.7 Debugging
It is important to run the plain Python version because it contains assertions and test it before trying to
compile it to ZPAQL. For the Python runtime a compare option was introduced to test the correctness of the
pcomp code which should restore the preprocessor input. Each output byte is compared to the expected
output and a debugger shell spawned if a mismatch occurs.
Because compiler optimizations are likely to introduce bugs there is a small test suite in the Makefile. It
compares the output of the Python code for pcomp and hcomp to the output of running the compiled
ZPAQL code. Mostly zpaqd r CFG p is used but also a ZPAQ VM implementation in Rust included in the
compiler (option --run-hcomp) because zpaqd r CFG h does not print 𝐻[0], …, 𝐻[𝑛 − 1].

8 Exemplary Configurations and Programs
As a showcase of the benefits of having a compiler for a high-level language like Python this chapter presents
and evaluates two new ZPAQ configurations. The first is a new image compression model which can parse
a header and combine various context predictors. And the second is an implementation of the Brotli decompression scheme in the pcomp phase.

8.1 Compression of PNM Image Data using a Context Model
PNM is a lossless image format which in variant P6 with a maximum color value of 256 saves 8-bit RGB
color channels as bytes after a short header with height and width1. To predict the value of a color channel
the value of the neighboring pixels can be used as context as far as they have been seen in the stream. L is
referring to the left pixel, LU to the upper left, U to the pixel above and UR to the upper right.
For grayscale images in a custom format such a context model has already been developed2 for ZPAQ and
performed better than PNG compression. Even if it does not match the ZPAQ configuration bmp_j4c.cfg,
it is therefore much faster because the context mixing network is simpler.
The PNM model test/pnm.py parses the header in Python to define the history buffer for one row and
takes a similar approach as the grayscale model but with separated context models for each channel. They
are mixed together also with an averaged value context model and indirect models. This mixed prediction
is again combined by a mixer with the prediction of a chain of ISSE (with a hash of various contexts and the
last byte as context) refining the prediction of an ICM (with an averaged value context).
Color transforms like the subtract green transform in WebP can improve compression by decorrelating colors
because one color component is often also a good predictor for the others3 and that link should be reduced to
improve prediction for the same color. The PNM model can use it as pre- and postprocessor, mapping (𝑟, 𝑔, 𝑏)
to (𝑟 − 𝑔, 𝑔, 𝑏 − 𝑔) and back. The preprocessor is in the separate Python file test/subtract_green.

1

http://netpbm.sourceforge.net/doc/ppm.html

2

http://www.modejong.com/blog/post15_zpaql_grayscale/index.html

3

https://developers.google.com/speed/webp/docs/webp_lossless_bitstream_specification#subtract_
green_transform

36

8 Exemplary Configurations and Programs

To measure the compression ratio four image files were converted to PNM in test/ and compressed (512
pixel high peppers.pnm, monarch.pnm, kodim23.pnm4 and 1020 pixel high rafale.pnm5). FLIF is a new
lossless format6.

(a) kodim23

(b) peppers

(c) monarch

(d) rafale

Figure 8.1: Images of the benchmark

Method

Total file size in byte

ZPAQ archive with bmp_j4c.cfg (in BMP format, uses special color transform)

1785405

ZPAQ archive with pnm.cfg

1908258

FLIF

1914297

WebP

2256458

PNG

2938153

For now it does not use e.g. delta coding or other predictors beside the average from neighbor values. Also
it could provide another predicted color value which is estimated by the recent development. Beside that
the color transform should depend on the image or a way needs to be found to move its advantage out from
the preprocessor into the predictors. Like the mentioned grayscale model it uses an additional context for
the mixer depending on image noise.
By using Python the model can easily be improved and writing it in ZPAQL would have been a bigger an
bug-prone effort. The bytecode overhead as of writing is around 3 KB.
For the large 53 MB photo canon24.pnm7 it would reach the 6th place with 21,326,964 bytes (89 seconds
for (de)compression) in the benchmark for lossless picture compression published in a paper about BWT
image compression [15]. For kodim23.pnm it would reach the 4th place with an archive size of 369,519
bytes. An overall benchmark for a huge number of files like in 8 or 9 has not been done up to now.

4

Commonly used for image compression benchmarks, available under http://r0k.us/graphics/kodak/

5

http://www.maximumcompression.com/data/bmp.php

6

http://flif.info/

7

https://web.archive.org/web/20140702040431/http://www.squeezechart.com/canon24.pnm

8

http://www.squeezechart.com/bitmap.html

9

http://imagecompression.info/gralic/LPCB.html

8.2 Bringing the Brotli Algorithm to ZPAQ

37

8.2 Bringing the Brotli Algorithm to ZPAQ
The algorithm has to be implemented as postprocessor in pcomp and uses the Brotli compressor10 as preprocessor. Because the dictionary itself is almost twice the maximum bytecode size allowed it has to be
prepended before the first segment of the compressed Brotli data for being read into memory. Following
Brotli streams as additional segments in the same block can use a byte different from the first dictionary byte
as prefix instead of prepending the whole dictionary again.
Instead of porting the C library or writing a new implementation based on the Brotli specification [11] it
was easier to port a decompressor written in Rust11 to the Python-subset (see test/brotli.py). It works
as standalone Python program test/brotli.py and can be compiled to ZPAQL with a bytecode size of
64870 bytes (ZPAQ config file test/brotli.cfg).
This means the size of an empty archive is already 184 KB if no context mixing is used for the dictionary
and bytecode. A simple order-1 ICM model brings it down to 90 KB. The slightly more advanced model of
mfast.cfg and its hcomp code reach 64 KB in total.

The overhead is less significant for bigger archives and trying to reduce it by applying context mixing to the
whole block might not always improve the result because the Brotli data could be expanded in coding size.
For the four sample PNM files it saves 133 KB which is almost the size of the dictionary and bytecode (from
3615 KB with no arithmetic coding down to 3482 KB in total). For the enwik8 benchmark12 (100 MB
Wikipedia dump) however this would not even make sense because mfast.cfg alone performs better by
reaching 24720 KB instead of 30303 KB when used together with Brotli data and the dictionary/bytecode
overhead. The same Brotli data without arithmetic coding through context model can be stored in around
30416 KB, depending on the Brotli compressor options it might go down to around 26000 KB.
Decompression is much slower than with the C or Rust Brotli implementations. The ZPAQL implementation
needs 118 seconds for enwik8 instead of 0.5 or 2.1 seconds for the reference C implementation and the one
of Mark Adler13. The memory management is not very efficient, specially dealing with byte arrays on 𝑀 is
expensive and the compiler could sometimes produce better code by avoiding the intermediate variables in
𝑅. Beside that ZPAQL is JIT-compiled by libzpaq in a rather simple way and so an advanced JIT backend on

top of LLVM could help.
But it shows that ZPAQ can be used with a very different algorithm and it still maintains backwards compatibility. A ZPAQ decompressor could also detect if the embedded pcomp bytecode is in fact a Brotli
implementation and skip its execution by using one of the faster C or Rust implementations. That way new
algorithms become instantly available while new versions of decompressors can have a speed advantage by
replacing the bytecode execution with the equivalent library call.

10 https://github.com/google/brotli
11 https://github.com/ende76/brotli-rs
12

Used for the Hutter Prize compression challenge, comparison here: http://mattmahoney.net/dc/text.html

13 https://github.com/madler/brotli

9 Evaluation
What follows in this chapter is a review on the outcome so far of working on a compiler as well as an
attempt to provide one possible answer to the question whether — or how well — ZPAQ suits to be a
general standard for data compression.

9.1 Compiler Construction
Rust provided a good environment to prevent multiple bugs by detecting them at compile time. Yet it takes
up to four minutes for an iterative build which is also due to the big parser generated by lalrpop. Recently
there is development in a table-driven mode which could provide faster compile times by producing less
parser code. Also the upcoming MIR intermediate language will allow the Rust compiler to cache compiled
code segments if they have not been altered. This way test-driven development would be more easy because
of fast iterations.
Even if Rust provides inbuilt test support is has not been used as the compiled code output was mainly tested
with zpaqd. This could be improved, specially with the small ZPAQL VM implementation that is already
included and used for testing the correctness of computations through the Makefile. The code lacks inline
documentation and the structure is sometimes not idiomatic to Rust. Error handling currently uses panics
instead of propagation of success or failure via result types.

9.2 Performance of the Compiler
The choice of the Python-subset and IR seemed to be supporting a fast development of the compiler even if
a lot of optimization passes are still missing. There might be compiler bugs which have not been discovered
up to now as the test coverage is not too extensive.
While the original ZPAQL file for test/lz1.orig.cfg needs 251 bytes for an empty archive the port
test/lz1.py compiled to bytecode needs 1255 bytes for an empty archive which is an overhead of around

1000 bytes compared to handwritten LZ1.

9.3 Analysis of the generated Code and Comparison with handwritten Code of LZ1

39

Runtime Benchmarks of the LZ1 Configuration in ZPAQL and Python for the four PNMs

ZPAQ config

Compression time (sec)

Archive size (bytes)

Decompression time (sec)

zpaqlpy lz1.cfg

1.6

3350016

1.85

handwritten lz1.orig.cfg

1.3

3349062

1.53

9.3 Analysis of the generated Code and Comparison with handwritten
Code of LZ1
The original test/lz1.orig.cfg is very dense and tries to hold values only in the registers if possible. Only
in the pcomp code two 𝑅 variables are used along with 𝑀 as history buffer. Sometimes variables are moved
between the registers because certain operations are only available on 𝐴. Without comments it would be
difficult to guess what it does and make changes.
On the other hand the compiled test/lz1.cfg from the Python version is rather large, specially when all
comments are embedded which is the default. It does not harm the bytecode size but is useful for debugging
and partly allows extraction of the original source as well as the IR code by invoking:

egrep ’\(*[0-9]+: ’ test/lz1.cfg

Python code

egrep ’\(+’ test/lz1.cfg | egrep -v ’\(*[0-9]+: ’

IR code

The compiled file starts with the runtime code which decides whether it is the first run. For the first run
it sets the base pointer and starts the global definitions before calling the pcomp/hcomp function with the
input. When initialization did take place already then the code decides whether a read was interrupted to
get a new input byte or if just the pcomp/hcomp function should be called again with the new input. As
stated in the previous chapters all Python variables are in the stack and thus it takes more opcodes to do
calculations on them. The code does not use custom arrays but instead used 𝑀 as history buffer as the
original code. Everytime when the function returns the jump table is used to jump behind the call and then
the execution halts.
It is an advantage that changes can be made more quickly in Python and the code is more comprehensible.
But the compiled code uses a stack while it is not really necessary and instead of using the jump table for
the return it could just use the halt instruction. So for simple programs like that it would be desirable if
the compiler offers a mode without a stack by holding variables in 𝑅.

40

9 Evaluation

9.4 Suitability of ZPAQ as universal Standard
ZPAQ serves well for research in context mixing algorithms and as development platform for custom algorithms. But whether it will replace general compression implementations in various libraries of deflate and
newer variants is open to question. Because a huge memory allocation or an endless loop can be unsafe for
decompressing untrusted archives, at least configurable limits need to be implemented into libzpaq. It might
also not be perfect for universal use as the mixing type (logarithmic) is quite fixed. In addition to that the
definition of an own encoder can not use the inbuilt context mixing. A component which takes something
like 𝐻[𝑖] − 2048 as stretched prediction value would be interesting (in a valid range to leave range space
for the other bit). Also it is not possible to define new components which maybe could be moved in an
additional section with its identifier mentioned. While pcomp gets notified about segments hcomp gets not
which could also be of use.
As a compiler target the ZPAQL instruction set lacks a variable jump instruction like jmpa which would take
the value of 𝐴 as destination or getpc which sets 𝐴 to the current program counter. It would be useful to
set 32-bit values directly in one instruction like a=L 3210987654. Memory management on top of 𝐻/𝑀 is
possible but a new data structure which allows using the OS heap would be more efficient. These proposals
could be considered for the next level of the ZPAQ specification.

10 Conclusion
It was shown that it is possible to have a compiler for ZPAQL which is also helpful for development of new
algorithms. To write the compiler large parts of the Python grammar have been ported to the format of the
LALR(1) parser library lalrpop. The core functionality of the Python module tokenize has been ported to
Rust. As a goal for a source input which should be supported a Rust implementation for Brotli decompression
has been ported to Python. A compilation scheme from a Python-subset to ZPAQL including an IR has been
planned and implemented. The compiler is platform independent as long as a Rust compiler is available. It
features an implementation of the ZPAQ VM to print the calculated context data for each input byte which
can then be compared with the calculated values of the Python source to expose ZPAQL specific semantics
or even compiler bugs.
As a result it can be said that more different approaches should be tried to reach an acceptable performance
for a large and complex code base. The ZPAQ specification does at its current point not offer various features
which might be considered for future improvements, from additional instructions up to ways of being even
more flexible on how prediction takes place. But most important would be a variable jump instruction.
Compilation can be configured with command line arguments to some extend. The pcomp or hcomp part
can be disabled so no changes to the input file are needed to vary between using only context mixing, only
a preprocessor or both. Documentation can be printed via arguments as well. Four example source files are
provided: A small context mixing compression for run length encoded data (see appendix tutorial), the LZ1
port and the PNM model which already showed good results with less efforts. An extreme case is the Brotli
algorithm which needed many compiler optimizations to fit under the 64 KB bytecode limit and utilizes
dynamic memory allocation.
While the compiler was developed two bugs in ZPAQ tools were found and are already resolved through
two new releases. One was a simple crash in zpaqd and the more serious one a wrong instruction in the
x86 JIT code of libzpaq which caused a miscomputation in the Brotli decompressor.
For most results there have been measurements which can be repeated because all needed tools are published
as free/libre software.
While PAQ and its internals were covered and modified in publications, ZPAQ was often only used as just
another compressor instead of a platform for compression algorithms. This work exposed the crucial part of
ZPAQ which is the embedding of the two bytecodes for hcomp and pcomp in the archive.

Bibliography
[1] J. Cleary and I. Witten. Data compression using adaptive coding and partial string matching. IEEE
Transactions on Communications, 32(4):396–402, Apr 1984. ISSN 0090-6778. doi: 10.1109/
TCOM.1984.1096090. http://dx.doi.org/10.1109/TCOM.1984.1096090.
[2] G. V. Cormack and R. N. S. Horspool. Data compression using dynamic markov modelling. Comput.
J., 30(6):541–550, December 1987. ISSN 0010-4620. doi: 10.1093/comjnl/30.6.541. http:
//dx.doi.org/10.1093/comjnl/30.6.541.

[3] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context-tree weighting method: basic properties. IEEE Transactions on Information Theory, 41(3):653–664, May 1995. ISSN 0018-9448. doi:
10.1109/18.382012. http://dx.doi.org/10.1109/18.382012.
[4] Matthew V. Mahoney. Fast text compression with neural networks. In James N. Etheredge
and Bill Z. Manaris, editors, Proceedings of the Thirteenth International Florida Artificial Intelligence Research Society Conference, May 22-24, 2000, Orlando, Florida, USA, pages 230–234.
AAAI Press, 2000. ISBN 1-57735-113-4. http://www.aaai.org/Library/FLAIRS/2000/
flairs00-044.php.

[5] Matthew V. Mahoney. The PAQ1 data compression program. 2002. https://cs.fit.edu/
~mmahoney/compression/paq1.pdf.

[6] Matthew V. Mahoney. Adaptive weighing of context models for lossless data compression, Florida
Tech. Technical Report CS-2005-16. 2005. https://cs.fit.edu/~mmahoney/compression/
cs200516.pdf.

[7] Matthew V. Mahoney. Data compression explained, 2010. http://mattmahoney.net/dc/dce.
html.

[8] Matthew V. Mahoney. The ZPAQ open standard format for highly compressed data - Level 2. 2016.
http://mattmahoney.net/dc/zpaq206.pdf.

[9] Matthew V. Mahoney. The ZPAQ compression algorithm. 2015. http://mattmahoney.net/dc/
zpaq_compression.pdf.

Bibliography

43

[10] James K. Bonfield and Matthew V. Mahoney. Compression of FASTQ and SAM format sequencing
data. PLoS ONE, 8(3):1–10, 03 2013. doi: 10.1371/journal.pone.0059190. http://dx.doi.org/
10.1371%2Fjournal.pone.0059190.

[11] Jyrki Alakuijala and Zoltan Szabadka. Brotli Compressed Data Format. RFC 7932, July 2016. https:
//rfc-editor.org/rfc/rfc7932.txt.

[12] John Scoville. Fast autocorrelated context models for data compression. CoRR, abs/1305.5486,
2013. http://arxiv.org/abs/1305.5486.
[13] Byron Knoll and Nando de Freitas. A machine learning perspective on predictive coding with PAQ.
CoRR, abs/1108.3298, 2011. http://arxiv.org/abs/1108.3298.
[14] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley, 2006. ISBN 978-0321486813.
[15] Aftab Khan and Ashfaq Khan. Lossless colour image compression using RCT for bi-level BWCA.
Signal, Image and Video Processing, 10(3):601–607, 2016. ISSN 1863-1711. doi: 10.1007/
s11760-015-0783-3. http://dx.doi.org/10.1007/s11760-015-0783-3.

A Tutorial
A context mixing model with a preprocessor for run length encoding is written. Three components are
used to form the network. Create a new template which will then be modified at the beginning and at the
pcomp/hcomp sections:
$./zpaqlpy --emit-template > rle_model.py
$ chmod +x rle_model.py

First the size of the arrays 𝐻 and 𝑀 for each section, hcomp and pcomp needs to be specified:
hh = 2

i.e. size is 2**2=4, because hH[0], …, hH[2] are the inputs for the

components

Listing A.1: rle_model.py

One component should give predictions based on the byte value and the second component based on the run
length, both give predictions for the next count and the next value. Then the context-mixing components
are combined to a network:
n = len({
0: ”cm 19 22”,

context table size 2*19 with
partly decoded byte as 9 bit hash xored with the context ,
count limit 22

4

1: ”cm 19 22”,
2: ”mix2 1 0 1 30 0”,
will mix 0 and 1 together , context table size 2**1 with and -0 masking of the
partly decoded byte which is added to the context , learning rate 30
9

})

Listing A.2: rle_model.py

Each component 𝑖 gets its context input from the entry in 𝐻[𝑖] after each run of the hcomp function, which is
called for each input byte of the preprocessed data, which either is to be stored through arithmetic coding in
compression phase or is retrieved through decoding in decompression phase with following postprocessing
done by calls of the pcomp function.
The context-mixing network is written to the archive in byte representation as well as the bytecode for
hcomp and pcomp (if they are used). The preprocessor command is needed when the compiled file is used

45

with zpaqd if a pcomp section is present. As the preprocessor might be any external programme or also
included in the compressing archiver and is of no use for decompression it is therefore not mentioned in the
archive anymore. This way we specify a preprocessor:
1

pcomp_invocation = ”./ simple_rle”

Listing A.3: rle_model.py

$ chmod +x simple_rle # create the preprocessor as executable file and fill it as follows
#!/usr/bin/env python3
import sys
input = sys.argv[1]
4

output = sys.argv[2]
with open(input , mode=’rb’) as fi:
with open(output , mode=’wb’) as fo:
last = None
count = 0

9

data = []
for a in fi.read():
if a != last or count == 255:
if last != None:

count only up to 255 to use one byte

write out the pair

data.append(last)
data.append(count)

14

last = a

start counting

count = 1
else:
count += 1
19

continue counting

if last != None:
data.append(last)
data.append(count)
fo.write(bytes(data))

Listing A.4: simple_rle

Then we need code in the pcomp section to undo this transform:
case_loading = False
last = NONE
3

def pcomp(c):
global case_loading , last
if c == NONE:

start of new segment , so restart our code

case_loading = False
8

last = NONE
return
if not case_loading:

c is byte to load

case_loading = True
last = c
13

else:

write out content of last c times

case_loading = False
while c > 0:

46

A Tutorial

c-= 1
out(last)

Listing A.5: rle_model.py

So now it should produce the same file as the input file:
$./simple_rle INPUTFILE input.rle
$./rle_model.py pcomp input.rle input.norle
$ cmp INPUTFILE input.norle

We can already try it, even if hcomp does not compute the context data yet (so compression is not good):
$./zpaqlpy rle_model.py
$./zpaqd c rle_model.cfg archive.zpaq FILE FILE FILE

Now we can add hcomp code to improve compression by adaptive prediction:
at_counter = False

if false , then c is byte , otherwise c is a counter

last_value = 0
3

last_counter = 0
def hcomp(c):

pcomp bytecode is passed first (or 0 if there is none)

global at_counter , last_value , last_counter
if at_counter:
8

last_counter = c
else:
last_value = c
first part of the context for the first CM is the byte replicated and
the second is whether we are at a counter (then we predict for a byte) or vice versa

13

hH[0] = (last_value << 1) + at_counter
hH[0] <<= 9

at_counter will occupy 1 bit , therefore shift

again shift to side because of the xor with the partially decoded byte

second CM same but uses the counter for prediction
hH[1] = (last_counter << 1) + at_counter
hH[1] <<= 9
18

hH[2] = at_counter + 0

context for mixer: is at counter (1) or not (0)

at_counter = not at_counter

Listing A.6: rle_model.py

We need to compile again before we run the final ZPAQ configuration file:
$./zpaqlpy rle_model.py
$./zpaqd c rle_model.cfg archive.zpaq FILE FILE FILE

zpaqd needs to have simple_rle in the same folder because we specified
pcomp_invocation = ”./simple_rle”.

B Visualizations
B.1 Arithmetic Coding

Figure B.1: Encoding and decoding steps without End-of-Message symbol

B.2 Context Mixing

Figure B.2: A possible text model

B.3 ZPAQ Format

Figure B.3: Structure of a block header

Figure B.4: Structure of segments

B.4 ZPAQL Virtual Machine

Figure B.5: Architecture with its building blocks

B.5 Compiler Pipeline

Figure B.6: The parts from source reading to writing a config file

