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ABSTRACT
The integrity of return addresses pushed to the stack is
the  oldest  target  of  control  flow attacks.  No mainline
compiler offers defenses for attacks that find the posi‐
tion of the return address and replace its content with a
malicious target address. We study proposed solutions
of the last years and try to overcome their security and
compatibility problems. We present an accessible Clang
compiler wrapper which offers shadow stacks or crypto‐
graphic  return  address  integrity.  Future  x86  or  ARM
processors will  enable the kernel to provide hardware
shadow  stacks  (Intel)  or  fast  pointer  authentification
(Qualcomm). But until then sensible applications with‐
out highest performance requirements can make use of
our software solution.

1. INTRODUCTION
Many  mitigation  ideas  have  been  implemented
since  the  first  steps  were  taken to  defend against
stack smashing attacks. Still, stack canaries are the
established choice  of  C compilers  and enabled by
default. But besides buffer overflows there are many
other vulnerabilities that offer read/write capabili‐
ties for an attacker. In general, canaries do not pro‐
tect against a targeted overwrite of the return ad‐
dress if the canary is left intact. Also when the stack
content and thus the canary is leaked the offer no
protection.

Not  all  security-sensitive  programs have perfor‐
mance as high goal and for others the advancement
of  processor  speed  should  have  compensated  the
impact of of more secure solutions. Looking at the
two big free software compilers GCC and Clang it is
surprising to see that only SafeStack [6] from CPI/
CPS  [16] got  upstreamed  into  Clang.  Safestack
maintains an additional unsafe stack for buffers and
objects  with  leakable  pointers.  At  least  OpenBSD
patched  their  Clang  version  recently  with  RET‐
GUARD  [19],  which  XORs  every  return  address
with the RSP. Before we look at these two and their
leak-related vulnerabilities in more detail, other de‐
fenses are presented.

After StackGuard introduced the concept of ran‐
dom canaries [3], similar strategies were developed
like the ProPolice canary that finally landed in GCC,
or XOR random canaries that  XOR the return ad‐
dress with the canary. Pointguard was an approach
to XOR all code pointers with a canary before they
are saved to memory [2].  This attempt hurts com‐

patibility and was therefore abandoned, in addition
it  is  also  vulnerable  to  leaks.  StackShield  imple‐
mented a shadow stack. The calling convention on
SPARC allowed StackGhost to add a kernel handler
for frame spills in order to introduce a XOR of the
return address with a per-process key before it  is
saved to the stack [10].

The  term  Control  Flow  Integrity  (CFI)  is  often
used to refer to techniques for forward-edge protec‐
tion i.e. integrity of indirect jumps and virtual func‐
tion tables. But it has to be noted that CFI relies on
available backward-edge protection which we dis‐
cuss here [1]. The CFI version of Clang [7] does only
mention a proposal in the design document to ex‐
tend  it  further  to  backward-edge  CFI  for  return
statements [8].

The PaX team sells grsecurity RAP [12] which in‐
troduces CFI for user and kernelspace. This CFI is
based on function types  and also used for  return
target verification, where in addition an in-register
XOR canary of  the  return address  is  kept.  But  in
userspace this canary is stored on the stack and the
protection is  vulnerable to leaks the same way as
other XOR-based solutions.

Cryptographically  Enforced CFI  (CCFI)  [17] im‐
plements in contrast to all  XOR-based solutions,  a
leak-resilient  return  address  protection  through
AES-NI HMACs based on a secret key, the return
address, and the RBP. Even though known-plaintext
attacks are circumvented, a replay attack scenario is
left where a previously valid address can be rein‐
jected in an invalid context. As a custom LLVM pass
it stores the key and AES variables in the xmm regis‐
ters and breaks ABI compability.

Qualcomm announced an  ARM 8.3  pointer  au‐
thentification  ISA  extension  that  offers  hardware
implementations of HMACs for return address in‐
tegrity or CFI [18]. For return address integrity the
context for the HMAC is the RSP which also allows
a replay attack. In comparison to CCFI the HMAC
size is reduced to fit into the ~24 static bits of the
userspace address pointers. The keys are stored in
the processor and have to be managed by the kernel
per process.

Microsoft included Return Flow Guard (RFG) [5]
as  shadow  stack  solution  but  discontinued  this
project  because the API  design was vulnerable  to
leaks and the region itself writable [15]. Instead co‐



operation with Intel was started for Intel’s hardware
stack protection.

Intel  announced  its  Control-flow  Enforcement
Technology  (CET)  [14] as  transparent  hardware
shadow stack for call/ret instructions. The shad‐
ow stack of a process is set up by the kernel and
protected through the MMU. In addition it includes
legal-target  markers  for  indirect  jumps  as  simple
CFI  mechanism.  Patches  landed recently  in  Clang
and GCC but neither kernel support nor hardware
are available.

This  project  should  implement  and  evaluate
strong return address protection in software. This is
considered meaningful for sensitive applications be‐
cause the hardware-based solutions are just emerg‐
ing at the horizon and will take years to arrive for
the majority of users.

2. SAFESTACK AND RETGUARD
We  first  study  the  current  problems  of  SafeStack
and RETGUARD to see what properties a solution
needs.  SafeStack  is  designed  to  keep  the  original
stack safe  by static  analysis  to  determine leakable
pointers which should rather be used for the unsafe
stack. Since the unsafe stack is isolated, buffer over‐
flows there do not reach the return addresses but hit
unmapped  memory.  The  performance  impact  of
moving buffers to a second memory region is small.

Instead of isolating memory regions, RETGUARD
only  needs  an  additional  XOR  instruction  in  the
function prolog and epilog. It considers the RSP as
key to be secret so that appropriate XORed values
can not be forged by the attacker. But also reading
the XORed stack content reveals the RSP if the tar‐
get address is known (or the target address if  the
RSP is known) due to the nature of the XOR opera‐
tion working in both directions.

To  protect  against  an  arbitrary  write  capability
both defenses rely on ASLR and thus decline with
pointer leakage. With SafeStack direct leaking of the
stack position through variables  is  prevented,  but
information hiding is a complex problem specially
when the position of the original stack is concerned.
The stack position can be found through neglected
pointers in libraries or the TCB, thread spraying or
the constant offset from TLS for secondary threads
[11]. On a simple implementation side channel at‐
tacks were possible, too [9].

In  particular  the  relation  of  the  TLS  with  sec‐
ondary threads was a motivation for us to see what
other offsets are constant. We found out that the un‐
safe stack has a constant offset to the stack of sec‐
ondary threads. We were also able to leak all sensi‐

ble pointers through a traditional format string at‐
tack because the x86_64 call convention for variable
argument counts let us leak the stack contents like
RBP and the return address after first the registers
were leaked.

RETGUARD and SafeStack  stay  ABI  compatible
which is eases adoption. For RETGUARD there is a
window of few processor cycles where the return
address is unprotected in memory directly after the
call or before the ret instruction. TOCTOU attacks
that exploit this are feasible in theory but we do not
consider them here.

Since RETGUARD like SafeStack relies on a hid‐
den RSP value, a combination of RETGUARD and
SafeStack offers no higher protection if this assump‐
tion is violated. For completeness we want to point
out  that  RETGUARD does  not  incur  a  hurdle  for
ROP chains.  Here  an example  with  three  gadgets
and  the  malicious  stack  content  being  placed  in‐
stead of the return address at RSP:

A: pop rdi; pop rsi; xor [rsp],rsp; ret 
B: call open; xor [rsp], rsp; ret 
C: call read; …
rsp+56:      C^(RSP+56)
rsp+40:      ptr:buf
rsp+40:      3
rsp+32:      A^(RSP+32)
rsp+24:      B^(RSP+24)
rsp+16       0
rsp+8:       ptr:"file"
rsp:         A^RSP

3.  PROJECT  THREAT  MODEL  AND
REQUIREMENTS
Both  SafeStack  and  RETGUARD  do  not  protect
against two consecutive format string attacks.  The
attack would first to leak the RBP (in SafeStack other
interesting pointers  could  be  used  as  well  on  sec‐
ondary threads) to calculate the RSP as pointer to
the return address, and also leak the return address
as  a  code  pointer  to  calculate  the  target  address.
Then the second format string attack overwrites the
return address e.g. by using the RBP again with the
%n argument to set up a pointer to the return ad‐
dress at the position where RBP pointed to, then lat‐
er in the format string reference this as argument to
continue with finally overwriting the return address
with another %n argument.

Many  other  vulnerabilities  give  similar  read/
write primitives which might even be more conve‐
nient to use. We can abstract from all the specific at‐
tacks by requiring that any solution we propose for



return  address  integrity  should  mitigate  against
overwriting the return address after the stack con‐
tents have been leaked (stack contents can be stack
and code pointers). Defenses can still be probabilis‐
tic which means that mitigation is not fully guaran‐
teed.

Replay attacks need observation of a large execu‐
tion path to inject old return addresses in a different
context where they can not be distinguished from
the valid addresses. If a solution does not prevent
this,  it  is  a  drawback but  overall  still  a  huge im‐
provement to the current state if this is the only vul‐
nerable point.

Because we value compatibility we disregard the
time window between the call instruction until the
function prolog has finished as well from the start
of the function epilog until the return address is ex‐
ecuted. Reads and writes during this time are out of
our threat model.

Defenses against  the described leaks have to be
more involved than a simple XOR and therefore we
expect them to have a bigger impact on the runtime.
Shadow stacks are easy solutions that fulfill the cri‐
teria but they are known to be slow. On the other
hand this means that any cryptographic approach
should be faster  than shadow stacks,  otherwise it
makes no sense to use it because the properties are
likely to be weaker than those of shadow stacks.

4. PROJECT PLAN AND RESULT
First  we  intended to  accompany SafeStack  with  a
RETGUARD-like XOR of the return address, but in‐
stead of the RSP using a secret value. As we realized
that this is vulnerable to the described known-plain‐
text attack we studied stronger cryptograhic primi‐
tives  for  signatures,  encryption  and  HMACs  and
also found out  how CCFI and Qualcomm Pointer
Authentification approached this.

The  implementation  also  had  unexpected  chal‐
lenges because a separate LLVM pass does not allow
the replacement of machine instructions. Like RET‐
GUARD we would  have  to  modify  LLVM with  a
new machine target pass. But there is not much doc‐
umentation to find and the compile times allowed
only four tries per hour. Therefore we decided to go
with assembly instrumentation for the limited scope
of this project. This also allowed us to produce more
prototypes with different techniques for return ad‐
dress protection. Each prototype is a pass which op‐
erates on assembly artifacts of Clang.

Main building blocks for a compatible instrumen‐
tation of the function pro- and epilogs are a way to
decide whether initialization code should be execut‐

ed and a secure information storage.  Thread local
storage  (TLS)  variables,  in  C  declared  with the
__thread prefix, can be declared with a initial val‐
ue which allows detection if a new thread was start‐
ed. For the safe storage place the TLS is not appro‐
priate  because  it  is  writable  in  memory  and  is
placed at the beginning of each secondary thread.

Since the System V 64 bit ABI does not guarantee
regular registers to stay untouched we considered
switching off  AVX usage during compilation. This
not only impacts performance but also hurts compa‐
bility when linking. Luckily we found out that the
old x87 floating point register stack (st0, st1, …) is
not  used  by  GCC or  Clang  and  even  can  not  be
turned on with -mfpmath=387.  We therefore con‐
sider these registers as safe because only our instru‐
mentation code will use them. Binary ROP gadgets
are irrelevant because they require that the control
flow hijack already took place.

Next we will describe the assembly instrumenta‐
tion  framework,  a  RAP-like  simple  XOR  pass,  an
userspace shadow stack pass, an in-kernel shadow
stack  pass  and  finally  a  pass  with  HMAC-based
cryptographic protection.

4.1 INSTRUMENTATION FRAMEWORK

We  designed  a  compiler  wrapper  script  that  will
first  produce assembly output for instrumentation
and then continue with the final compilation to a
linked  binary.  Because  it  should  behave  invoking
the regular compiler some more tricks are involved
but we hope to have most things covered. The in‐
strumentation passes are kept in separate files and
are specified as argument for the wrapper. An extra
layer of complexity is that for supporting shared ob‐
jects each pass needs to switch between the modes
of addressing the TLS variables. Also, a pass should
emit its global definitions only once.
# Set compiler for build scripts
# or manual invocation as $CC
export CC="$PWD/ccwrapper $PWD/pypass…"

For usage with a build system exporting the CC en‐
vironment  variable  was  enough  in  many  cases,
some build scripts might need adaptions. The test
about how the compiler “reports undeclared, stan‐
dard  C  functions”  needs  to  be  patched  away  for
gzip. Another instance are -O2 flags for optimiza‐
tion e.g. if the used instrumentation pass can only
follow  strict  LIFO  semantics  the  stack.  But  our
framework  may  have  other  problems  with  opti‐
mized code, too.

The  requirements  for  a  pass  are  that  it  can  be
called with these arguments by the wrapper:



./passXYZ [--shared] [infile] outfile

A  pass  modifies  an  input  assembly  file  in  AT&T
syntax and saves the result as output file, where in‐
put and output can be the same file. If no input file
is  given,  the  pass  should  emit  global  definitions
which are only included once in the final compila‐
tion phase. Presence of the shared flag means that
compilation in Clang takes place with the shared
flag so that the emitted assembly can adapt address‐
ing modes in terms of suffixes to the TLS:
# normal mode:
movq $1, %fs:var@tpoff
# vs.
# position independent mode:
leaq var@TLSGD(%rip), %rdi
callq __tls_get_addr@PLT
movq $1, (%rax)

Using Intel syntax turned out to be too compilicated
and lead to inconsistencies due to implicit assump‐
tions in the compilers that expect AT&T and when
inline assembly is involved.

Our passes are written in Python and the main
work takes place in the following line which relies
on Clang’s markers for function blocks.
inp.replace("retq\n", ret)
   .replace("# BB#0:\n", entry)

The variable entry contains instrumentation for the
function prolog, ret for the epilog.

The simplest pass is just an empty bash script that
does nothing. We also reimplemented RETGUARD
as pass to be independed from LLVM builds which
led to a high difference in runtime speed depending
on the version that is used. The following sections
describe all other passes.

4.2 SIMPLE XOR PROTECTION

We can improve RETGUARD with a secret key in‐
stead of the RSP. While it is still vulnerable to leaks
of the XORed return address, a blind replacement
after  RSP inference is  not possible anymore.  How
grsecurity RAP works in userspace is similar.

The  function prolog checks  the  TLS variable  to
decide whether the key needs to be set up. Key set‐
up is done in a helper function which uses the ge‐
trandom syscall  and  then  stores  the  random  key
into the x87 register stack.  At each function entry
and exit the key is changed with a constant (or the
RSP) in order to generate a temporary key for this
function, as a weak mitigation of the most simple re‐
play attacks. This updated key is stored back into
the safe register. The prolog ends with cleaning the

key from the memory and general register where it
needed to go through in order to XOR the return
address. Just before a return instruction is executed,
the epilog undoes the XOR after retrieving the key
from the x87 register stack and updating the key.

A  better  temporary  key  is  needed  because  the
current  change  per  function  frame  is  computable
which allows to modify an observed XORd return
address to be used in a different function frame. But
since XOR is used the whole solution anyway leaks
the current key if the plain return address is known.
If a secure hash function would be used to generate
a  unique  temporary  key  that  can  not  be  used  to
compute  a  temporary  key  of  another  function
frame, then there is no point in using XOR anymore
because a secure hash is already everything needed
for a HMAC solution that is resilient against known
plaintext attacks.

This  approach does  not  fully  meet  our  require‐
ments but is very simple and fast. If a two step ex‐
ploit of reading the XORed return address, known‐
ing the real return address and then forging a new
XOR  is  not  a  realistic  threat  model,  this  method
could be recommended for performance reasons.

4.3 SHADOW STACK

Shadow  stacks  in  the  program  memory  have  the
challenge that they are writable. Resetting the map‐
ping permissions in each function entry and exit is
costly  because  it  would  involve  system  calls  (but
easy to add if needed). Our solution aquires a new
memory region from the kernel at a random posi‐
tion through ASLR. The pointer to this stack is only
stored  in  the  safe  register  which  is  never  leaked.
While the idea is isolation, this mitigation still stays
probabilistic to some extend.

The original return address is safed to the shad‐
ow stack in the prolog and retrieved from there in
the epilog. The shadow stack pointer in the safe reg‐
ister is updated but one could also do a calculation
based on the current RSP and skip the update. This
would also solve the problem that strict  LIFO se‐
mantics  break  some higher  compiler  optimization
levels. Currently the return address on the stack is
compared with the shadow stack copy, a mismatch
lets  the  program abort.  One  could  also  decide  to
overwrite the original return address to hide a code
pointer.  Attack  detection  can  still  be  done  by  ob‐
serving  changes  in  the  overwritten  value  which
could be just zeros or the RSP. Access to two memo‐
ry regions is expected to have a performance impact
but therefore a shadow stack is not vulnerable to the
described known-plaintext and replay attacks.



4.4 IN-KERNEL SHADOW STACK

Unlike  the  userspace  stack,  our  in-kernel  shadow
stack is based on strong isolation and can distrust
the integrity of all process memory. The downside
is a system call are needed at function entry and ex‐
it, such a context switch hurts the runtime in many
ways.

Instead  of  accuiring  a  mmaped  region,  each
thread now gets  its  own in-kernel  data  structure.
We selected the message queue of the System V IPC
primitives.  Access is  restricted to the current  user
privilige when the queue is set up. The queue iden‐
tifier is kept in the safe register in order to protect it
from  corruption,  so  that  redirection  to  a  attacker
controlled queue with permission 666 is not possi‐
ble.

We had to  abuse  the  message  type  to  turn  the
FIFO semantics of the queue into LIFO by using the
current RSP as message type. On retrieval the kernel
needs to search through the queue which results in
O(n) complexity depending on the number of call
frames. The strict LIFO semantics could be loosened
by clearing all elements of the same message type
before a message is stored.

Currently forks do use the same queue because
only  new  threads  are  detected.  The  mentioned
problems  can  all  be  solved  with  a  custom kernel
module that needs no queue identifier by using the
PID to offer a separate hashmap for each thread as
storage for the return address. We did not look at
the possibility to use eBPF for that purpose.

4.5 HMAC POINTER AUTHENTIFICATION

To protect against key leakage through XOR with a
known return address we first looked into signature
algorithms. The duality of RSA keys allows to ‘en‐
crypt’ a message with the private key instead of the
public key, so that if ‘decrypting’ it with the public
key is possible the message is restored and its au‐
thenticity  proven.  Besides  RSA  there  are  other
schemes with such a double property of authentifi‐
cation and content hiding; the Nyberg-Rueppel sig‐
nature,  Niederreiter  encryption  scheme  and  sign‐
cryption. We did not investigate these options and
the performance they would offer – maybe there is
some hidden gem but mostly it did not look promis‐
ing compared with the HMAC approach that CCFI
and Qualcomm Pointer Authentification took.

We decided to start with a simple HMAC algo‐
rithm  to  see  how  the  rest  of  the  instrumentation
would look like. The HMAC could be stored some‐
where  else  but  we  did  not  want  to  introduce  a

change in the memory layout of the function. Like
Qualcomm we use the static bits of the address to
store the HMAC. We take the highest 17 bit which
because they are always zero for userspace address‐
es.

We  based  our  first  prototype  HMAC  on  a  (al‐
leged)  RC4  stream  cipher.  The  initialization  code
sets up a secret key in the x87 register with random
data  from  the  kernel.  At  function  entry  a  new
HMAC is calculated as hmac(key, RSP, return addr.).
The values are concatenated as 192 bit input to the
RC4 generator and by taking three bytes of its out‐
put  we get  the  17  bit  HMAC. The RC4 code was
written in C and compiled to assembly for further
modification.  Controlling  the  register  usage  was
easier  with  a  custom  calling  convention  for  this
helper function.

At the function epilog the HMAC and return ad‐
dress are separated again and a new HMAC is cal‐
culated on the basis of the found return address. If
both HMACs differ, execution is aborted.

The alleged RC4 algorithm runs two loops with
256  iterations  which  involve  memory  operations.
The  runtime  is  hurt  too  bad  for  practical  usage.
Qualcomm  uses  the  QARMA  cipher,  CCFI  uses
AES-NI to generate the HMAC which also involves
a lot of instructions but less memory accesses. Yet in
our case we would need to backup all xmm registers
since  we want  to  stay compatible.  Still  this  is  the
most promising approach for current hardware. The
newest hardware could use Intel’s SHA ISA exten‐
sion for 17 bit trimmed hash of the secret key, return
address  and RSP.  Of  the  many other  secure  hash
functions  we  could  use  instead,  BLAKE2  offers
good  benchmarking  results.  While  a  17  bit  hash
does not sound much one has to keep in mind that
the whole input is 192 bit. The attacker can control
the return address but does not know the secret key
in order to find a collision. Yet, the attacker can iter‐
ate  the  possible  64  bit  keys  and  hope  that  if  the
same HMAC is found this is not due to a collision
but a correct key – truncating the hash also has pos‐
itive effects.

In  the  first  prototype  with  RC4  we  decided  to
leave the return address leakable, however since the
key just occupies one of the x87 registers we could
easily introduce a second key that is used for an ad‐
ditional XOR to hide the return address. This also
introduces more unknown bits  for  the attacker  in
the HMAC.

Therefore we implemented our last variant with a
fast  non-cryptographic  hash function [13] and the
additional XOR. Under the assumption that a strong



cryptoanalysis is unlikely this is our most promising
approach.

Replay attacks are still possible but including the
RSP into the hash limits them to the same position
on the stack. Introducing a per-function constant in
the hash would further narrow this down to return
only to legitimate call sites of the current function
observed at this position in the stack. The practica‐
bility of replay attacks has not been studied, but it
might be possible the same way CFI is vulnerable
where a class of pointers has to be allowed because
exact knowlege is not available at compile time.

5. EVALUATION
Both shadow stacks and pointer authentification are
strong mitigation techniques that offer integrity for
return  addresses.  Based  on  examples  we  will
demonstrate the security and performance proper‐
ties of the approaches.

5.1 SECURITY

The threat model included leakage of the stack con‐
tents before the return address is overwritten. We
simulate this setting with a HTTP2-like service that
processes serveral requests in the same connection.
The  client  communication  is  handled  in a  new
thread. We chose a format string vulnerability be‐
cause it first leaks registers and then the stack for
higher arguments. A client requests files by specif‐
ing their names and the format string vulnerability
occurs when the server uses these filenames in its
answer. The answer is always that there is no such
file. Instead of having to use the format string attack
when overwriting the return address we included a
simple  write  primitive  for  brevity;  it  is  available
when the client requests the file “a” and then ad‐
dress and content can be entered.

The program leaks the buffer pointer to the un‐
safe  stack  from  a  register,  and  from  the  stack  a
pointer to a static string in the binary, the RBP and
the return address. It also leaks stdin which could
be used to get the address of system() but instead
of needing ROP to set up the argument we included
the function success that starts a shell,  so that a
simple code pointer offset is enough to determine
the new return address. Here is a simple extract of
the vulnerable function:
char buf[70];
char response[100];
char *header = "Not found: ";
int len = strlen(header);
strncpy(response, header, len);
fprintf(out,
"Request filename (empty to end):\nGET ");
while (fgets(&buf[0], 70, stream) != NULL

       && buf[0]!='\n') {
  snprintf(response+len, 70, buf);
  fwrite(response, 1, strlen(response), out);
  // insert easy write primitive here
  fprintf(out, "\nGET ");
}

An exploit can either use the unsafe stack pointer or
the RBP to calculate the RSP value when the func‐
tion returns because both have a constant offset. Ex‐
ploiting  RETGUARD  is  straightforward  though
XOR of the found return address with the RSP, ap‐
plying the offset to the new target function and a fi‐
nal  XOR with  the  RSP to  gain  a  valid  content  to
overwrite the return address.

Our simple XOR protection pass can also be ex‐
ploited  through  the  known-plaintext  attack.  Even
though the return address is XORed with a secret,
we  can  calculate  the  expected  return  address
though the leaked static  string pointer,  and in re‐
verse then even get the key through a XOR. This al‐
lows us to XOR the malicious target address with
the key and use it to overwrite the return address.

The two shadow stacks and the RC4 or fast hash
HMAC  authentification  can  not  be  exploited  be‐
cause  of  strong  isolation  for  the  kernel  shadow
stack, for the userspace shadow stack because of the
missing knowlege about the pointer which is kept in
a  safe  register,  and  for  the  HMAC protection  be‐
cause of  the  missing knowlege of  the  key for  the
HMAC algorithm.

We  provide  the  vulnerable  program  in  exam‐
ples/vuln.c and an automated exploit  in  exam‐
ples/vuln-exploit.

5.2 PERFORMANCE

We measured the runtime of common programs to
get an impression of the performance impact of the
presented  solutions.  Microbencharks  of  the  dura‐
tion of prolog and epilog would also be possible in
order to be independent from the number of call/
return pairs in the programs. In literature the run‐
time  increasement  for  shadow  stacks  varies  a  lot
from 5% to 30% or even 50% but all these numbers
have to be taken with a grain of salt [4]. We did no
finetuning for our prototypes.

The simple XOR secret does not meet out security
requirements but is almost as fast as RETGUARD or
no additional protection – the varying runtime jitter
is more significant than the slowdown. Out of our
secure solutions the userspace shadow stack offers
the best performance with a runtime of factor 3–25.
The in-kernel shadow stack resulted in a runtime of
factor 4–40. Our RC4-based HMAC turned out to be



very slow with a runtime of factor 38–190. The fast
HMAC with code pointer hiding has a runtime fac‐
tor between 1.2 and 2.3.

The programs were compiled without higher op‐
timization. The input to bzip2 and gzip was the Cal‐
gary corpus, for oggenc we used a test input of the
Opus codec website. The input for GCC was a large
C file generated with benchmark/input/genc.

5.3 FUTURE WORK

The chosen general hash function has to be evaluat‐
ed in terms of cryptoanalysis or be replaced with a
lightweight secure hash function; the main goal is
that the 64 bit key as unknown part of the algorithm
input is not computable from observing the 17 bit
truncated hash output. Also there are not many ma‐
licious target addresses for collisions.

We  could  also  use  the  AES-NI  instructions  to
compute an HMAC and see if this is faster than the
userspace  shadow  stack.  Due  to  ABI  compability
this will likely be slower than CCFI is able to keep
all the xmm registers set up. We did not have hard‐
ware to test Intel’s SHA instructions for HMAC cal‐
culation.

Replay attacks could be further made difficult by
introducing a per-function constant into the HMAC.

Currently  we  instrument  every  function  but  it
would be possible to adapt the stack-protector-
strong behavior of GCC to reduce function cover‐
age to those which are in need of protection.

Rerandomization  of  the  key  for  young  stack
frames  could  be  implemented  because  more  than
the half of the x87 registers are still free to backup
the key for old stack frames. This is particuarly use‐
ful  for  forked  processes  if  the  simple  XOR secret
pass is used.

All passes should be implemented as LLVM tar‐
get machine pass or GCC plugin to improve compa‐
bility with build scripts and compiler optimizations,

as well as compile time compared to our assembly
text replacement.

The userspace shadow stack needs to be further
optimized. The kernel shadow stack is an interest‐
ing idea and could also be optimized or even gener‐
alized for secure information storage of other kinds
than return addresses.

6. CONCLUSION
We presented attacks to SafeStack and RETGUARD
and  developed  strong  return  address  protection
based on safe registers and shadow stacks or crypto‐
graphic authentification. The acceptable tradeoff de‐
pends on the application in question, but currently
the fast HMAC is the recommended solution or the
userspace  shadow stack if  one  does  fear  a  strong
cryptoanalysis.  The XOR secret pass offers weaker
protection than our slower solutions but improves
on the security of RETGUARD and SafeStack with
minimal performance impact.

The availability  of  Intel’s  CET and Qualcomm’s
Pointer  Authentification  will  likely  obsolete  our
software  solutions  if  implemented  carefully.  But
even then there will be systems without these hard‐
ware features.
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