
IS561 Project Report ParisDakarTech:
Backward-edge Protection:

Improvements on SafeStack and RETGUARD
Alexis Gacel, Ndeye Khady Ngom, Kai Lüke

ABSTRACT
The integrity of return addresses pushed to the stack is
the oldest target of control flow attacks. No mainline
compiler offers defenses for attacks that find the posi‐
tion of the return address and replace its content with a
malicious target address. We study proposed solutions
of the last years and try to overcome their security and
compatibility problems. We present an accessible Clang
compiler wrapper which offers shadow stacks or crypto‐
graphic return address integrity. Future x86 or ARM
processors will enable the kernel to provide hardware
shadow stacks (Intel) or fast pointer authentification
(Qualcomm). But until then sensible applications with‐
out highest performance requirements can make use of
our software solution.

1. INTRODUCTION
Many mitigation ideas have been implemented
since the first steps were taken to defend against
stack smashing attacks. Still, stack canaries are the
established choice of C compilers and enabled by
default. But besides buffer overflows there are many
other vulnerabilities that offer read/write capabili‐
ties for an attacker. In general, canaries do not pro‐
tect against a targeted overwrite of the return ad‐
dress if the canary is left intact. Also when the stack
content and thus the canary is leaked the offer no
protection.

Not all security-sensitive programs have perfor‐
mance as high goal and for others the advancement
of processor speed should have compensated the
impact of of more secure solutions. Looking at the
two big free software compilers GCC and Clang it is
surprising to see that only SafeStack [6] from CPI/
CPS [16] got upstreamed into Clang. Safestack
maintains an additional unsafe stack for buffers and
objects with leakable pointers. At least OpenBSD
patched their Clang version recently with RET‐
GUARD [19], which XORs every return address
with the RSP. Before we look at these two and their
leak-related vulnerabilities in more detail, other de‐
fenses are presented.

After StackGuard introduced the concept of ran‐
dom canaries [3], similar strategies were developed
like the ProPolice canary that finally landed in GCC,
or XOR random canaries that XOR the return ad‐
dress with the canary. Pointguard was an approach
to XOR all code pointers with a canary before they
are saved to memory [2]. This attempt hurts com‐

patibility and was therefore abandoned, in addition
it is also vulnerable to leaks. StackShield imple‐
mented a shadow stack. The calling convention on
SPARC allowed StackGhost to add a kernel handler
for frame spills in order to introduce a XOR of the
return address with a per-process key before it is
saved to the stack [10].

The term Control Flow Integrity (CFI) is often
used to refer to techniques for forward-edge protec‐
tion i.e. integrity of indirect jumps and virtual func‐
tion tables. But it has to be noted that CFI relies on
available backward-edge protection which we dis‐
cuss here [1]. The CFI version of Clang [7] does only
mention a proposal in the design document to ex‐
tend it further to backward-edge CFI for return
statements [8].

The PaX team sells grsecurity RAP [12] which in‐
troduces CFI for user and kernelspace. This CFI is
based on function types and also used for return
target verification, where in addition an in-register
XOR canary of the return address is kept. But in
userspace this canary is stored on the stack and the
protection is vulnerable to leaks the same way as
other XOR-based solutions.

Cryptographically Enforced CFI (CCFI) [17] im‐
plements in contrast to all XOR-based solutions, a
leak-resilient return address protection through
AES-NI HMACs based on a secret key, the return
address, and the RBP. Even though known-plaintext
attacks are circumvented, a replay attack scenario is
left where a previously valid address can be rein‐
jected in an invalid context. As a custom LLVM pass
it stores the key and AES variables in the xmm regis‐
ters and breaks ABI compability.

Qualcomm announced an ARM 8.3 pointer au‐
thentification ISA extension that offers hardware
implementations of HMACs for return address in‐
tegrity or CFI [18]. For return address integrity the
context for the HMAC is the RSP which also allows
a replay attack. In comparison to CCFI the HMAC
size is reduced to fit into the ~24 static bits of the
userspace address pointers. The keys are stored in
the processor and have to be managed by the kernel
per process.

Microsoft included Return Flow Guard (RFG) [5]
as shadow stack solution but discontinued this
project because the API design was vulnerable to
leaks and the region itself writable [15]. Instead co‐

operation with Intel was started for Intel’s hardware
stack protection.

Intel announced its Control-flow Enforcement
Technology (CET) [14] as transparent hardware
shadow stack for call/ret instructions. The shad‐
ow stack of a process is set up by the kernel and
protected through the MMU. In addition it includes
legal-target markers for indirect jumps as simple
CFI mechanism. Patches landed recently in Clang
and GCC but neither kernel support nor hardware
are available.

This project should implement and evaluate
strong return address protection in software. This is
considered meaningful for sensitive applications be‐
cause the hardware-based solutions are just emerg‐
ing at the horizon and will take years to arrive for
the majority of users.

2. SAFESTACK AND RETGUARD
We first study the current problems of SafeStack
and RETGUARD to see what properties a solution
needs. SafeStack is designed to keep the original
stack safe by static analysis to determine leakable
pointers which should rather be used for the unsafe
stack. Since the unsafe stack is isolated, buffer over‐
flows there do not reach the return addresses but hit
unmapped memory. The performance impact of
moving buffers to a second memory region is small.

Instead of isolating memory regions, RETGUARD
only needs an additional XOR instruction in the
function prolog and epilog. It considers the RSP as
key to be secret so that appropriate XORed values
can not be forged by the attacker. But also reading
the XORed stack content reveals the RSP if the tar‐
get address is known (or the target address if the
RSP is known) due to the nature of the XOR opera‐
tion working in both directions.

To protect against an arbitrary write capability
both defenses rely on ASLR and thus decline with
pointer leakage. With SafeStack direct leaking of the
stack position through variables is prevented, but
information hiding is a complex problem specially
when the position of the original stack is concerned.
The stack position can be found through neglected
pointers in libraries or the TCB, thread spraying or
the constant offset from TLS for secondary threads
[11]. On a simple implementation side channel at‐
tacks were possible, too [9].

In particular the relation of the TLS with sec‐
ondary threads was a motivation for us to see what
other offsets are constant. We found out that the un‐
safe stack has a constant offset to the stack of sec‐
ondary threads. We were also able to leak all sensi‐

ble pointers through a traditional format string at‐
tack because the x86_64 call convention for variable
argument counts let us leak the stack contents like
RBP and the return address after first the registers
were leaked.

RETGUARD and SafeStack stay ABI compatible
which is eases adoption. For RETGUARD there is a
window of few processor cycles where the return
address is unprotected in memory directly after the
call or before the ret instruction. TOCTOU attacks
that exploit this are feasible in theory but we do not
consider them here.

Since RETGUARD like SafeStack relies on a hid‐
den RSP value, a combination of RETGUARD and
SafeStack offers no higher protection if this assump‐
tion is violated. For completeness we want to point
out that RETGUARD does not incur a hurdle for
ROP chains. Here an example with three gadgets
and the malicious stack content being placed in‐
stead of the return address at RSP:

A: pop rdi; pop rsi; xor [rsp],rsp; ret
B: call open; xor [rsp], rsp; ret
C: call read; …
rsp+56: C^(RSP+56)
rsp+40: ptr:buf
rsp+40: 3
rsp+32: A^(RSP+32)
rsp+24: B^(RSP+24)
rsp+16 0
rsp+8: ptr:"file"
rsp: A^RSP

3. PROJECT THREAT MODEL AND
REQUIREMENTS
Both SafeStack and RETGUARD do not protect
against two consecutive format string attacks. The
attack would first to leak the RBP (in SafeStack other
interesting pointers could be used as well on sec‐
ondary threads) to calculate the RSP as pointer to
the return address, and also leak the return address
as a code pointer to calculate the target address.
Then the second format string attack overwrites the
return address e.g. by using the RBP again with the
%n argument to set up a pointer to the return ad‐
dress at the position where RBP pointed to, then lat‐
er in the format string reference this as argument to
continue with finally overwriting the return address
with another %n argument.

Many other vulnerabilities give similar read/
write primitives which might even be more conve‐
nient to use. We can abstract from all the specific at‐
tacks by requiring that any solution we propose for

return address integrity should mitigate against
overwriting the return address after the stack con‐
tents have been leaked (stack contents can be stack
and code pointers). Defenses can still be probabilis‐
tic which means that mitigation is not fully guaran‐
teed.

Replay attacks need observation of a large execu‐
tion path to inject old return addresses in a different
context where they can not be distinguished from
the valid addresses. If a solution does not prevent
this, it is a drawback but overall still a huge im‐
provement to the current state if this is the only vul‐
nerable point.

Because we value compatibility we disregard the
time window between the call instruction until the
function prolog has finished as well from the start
of the function epilog until the return address is ex‐
ecuted. Reads and writes during this time are out of
our threat model.

Defenses against the described leaks have to be
more involved than a simple XOR and therefore we
expect them to have a bigger impact on the runtime.
Shadow stacks are easy solutions that fulfill the cri‐
teria but they are known to be slow. On the other
hand this means that any cryptographic approach
should be faster than shadow stacks, otherwise it
makes no sense to use it because the properties are
likely to be weaker than those of shadow stacks.

4. PROJECT PLAN AND RESULT
First we intended to accompany SafeStack with a
RETGUARD-like XOR of the return address, but in‐
stead of the RSP using a secret value. As we realized
that this is vulnerable to the described known-plain‐
text attack we studied stronger cryptograhic primi‐
tives for signatures, encryption and HMACs and
also found out how CCFI and Qualcomm Pointer
Authentification approached this.

The implementation also had unexpected chal‐
lenges because a separate LLVM pass does not allow
the replacement of machine instructions. Like RET‐
GUARD we would have to modify LLVM with a
new machine target pass. But there is not much doc‐
umentation to find and the compile times allowed
only four tries per hour. Therefore we decided to go
with assembly instrumentation for the limited scope
of this project. This also allowed us to produce more
prototypes with different techniques for return ad‐
dress protection. Each prototype is a pass which op‐
erates on assembly artifacts of Clang.

Main building blocks for a compatible instrumen‐
tation of the function pro- and epilogs are a way to
decide whether initialization code should be execut‐

ed and a secure information storage. Thread local
storage (TLS) variables, in C declared with the
__thread prefix, can be declared with a initial val‐
ue which allows detection if a new thread was start‐
ed. For the safe storage place the TLS is not appro‐
priate because it is writable in memory and is
placed at the beginning of each secondary thread.

Since the System V 64 bit ABI does not guarantee
regular registers to stay untouched we considered
switching off AVX usage during compilation. This
not only impacts performance but also hurts compa‐
bility when linking. Luckily we found out that the
old x87 floating point register stack (st0, st1, …) is
not used by GCC or Clang and even can not be
turned on with -mfpmath=387. We therefore con‐
sider these registers as safe because only our instru‐
mentation code will use them. Binary ROP gadgets
are irrelevant because they require that the control
flow hijack already took place.

Next we will describe the assembly instrumenta‐
tion framework, a RAP-like simple XOR pass, an
userspace shadow stack pass, an in-kernel shadow
stack pass and finally a pass with HMAC-based
cryptographic protection.

4.1 INSTRUMENTATION FRAMEWORK

We designed a compiler wrapper script that will
first produce assembly output for instrumentation
and then continue with the final compilation to a
linked binary. Because it should behave invoking
the regular compiler some more tricks are involved
but we hope to have most things covered. The in‐
strumentation passes are kept in separate files and
are specified as argument for the wrapper. An extra
layer of complexity is that for supporting shared ob‐
jects each pass needs to switch between the modes
of addressing the TLS variables. Also, a pass should
emit its global definitions only once.
Set compiler for build scripts
or manual invocation as $CC
export CC="$PWD/ccwrapper $PWD/pypass…"

For usage with a build system exporting the CC en‐
vironment variable was enough in many cases,
some build scripts might need adaptions. The test
about how the compiler “reports undeclared, stan‐
dard C functions” needs to be patched away for
gzip. Another instance are -O2 flags for optimiza‐
tion e.g. if the used instrumentation pass can only
follow strict LIFO semantics the stack. But our
framework may have other problems with opti‐
mized code, too.

The requirements for a pass are that it can be
called with these arguments by the wrapper:

./passXYZ [--shared] [infile] outfile

A pass modifies an input assembly file in AT&T
syntax and saves the result as output file, where in‐
put and output can be the same file. If no input file
is given, the pass should emit global definitions
which are only included once in the final compila‐
tion phase. Presence of the shared flag means that
compilation in Clang takes place with the shared
flag so that the emitted assembly can adapt address‐
ing modes in terms of suffixes to the TLS:
normal mode:
movq $1, %fs:var@tpoff
vs.
position independent mode:
leaq var@TLSGD(%rip), %rdi
callq __tls_get_addr@PLT
movq $1, (%rax)

Using Intel syntax turned out to be too compilicated
and lead to inconsistencies due to implicit assump‐
tions in the compilers that expect AT&T and when
inline assembly is involved.

Our passes are written in Python and the main
work takes place in the following line which relies
on Clang’s markers for function blocks.
inp.replace("retq\n", ret)
 .replace("# BB#0:\n", entry)

The variable entry contains instrumentation for the
function prolog, ret for the epilog.

The simplest pass is just an empty bash script that
does nothing. We also reimplemented RETGUARD
as pass to be independed from LLVM builds which
led to a high difference in runtime speed depending
on the version that is used. The following sections
describe all other passes.

4.2 SIMPLE XOR PROTECTION

We can improve RETGUARD with a secret key in‐
stead of the RSP. While it is still vulnerable to leaks
of the XORed return address, a blind replacement
after RSP inference is not possible anymore. How
grsecurity RAP works in userspace is similar.

The function prolog checks the TLS variable to
decide whether the key needs to be set up. Key set‐
up is done in a helper function which uses the ge‐
trandom syscall and then stores the random key
into the x87 register stack. At each function entry
and exit the key is changed with a constant (or the
RSP) in order to generate a temporary key for this
function, as a weak mitigation of the most simple re‐
play attacks. This updated key is stored back into
the safe register. The prolog ends with cleaning the

key from the memory and general register where it
needed to go through in order to XOR the return
address. Just before a return instruction is executed,
the epilog undoes the XOR after retrieving the key
from the x87 register stack and updating the key.

A better temporary key is needed because the
current change per function frame is computable
which allows to modify an observed XORd return
address to be used in a different function frame. But
since XOR is used the whole solution anyway leaks
the current key if the plain return address is known.
If a secure hash function would be used to generate
a unique temporary key that can not be used to
compute a temporary key of another function
frame, then there is no point in using XOR anymore
because a secure hash is already everything needed
for a HMAC solution that is resilient against known
plaintext attacks.

This approach does not fully meet our require‐
ments but is very simple and fast. If a two step ex‐
ploit of reading the XORed return address, known‐
ing the real return address and then forging a new
XOR is not a realistic threat model, this method
could be recommended for performance reasons.

4.3 SHADOW STACK

Shadow stacks in the program memory have the
challenge that they are writable. Resetting the map‐
ping permissions in each function entry and exit is
costly because it would involve system calls (but
easy to add if needed). Our solution aquires a new
memory region from the kernel at a random posi‐
tion through ASLR. The pointer to this stack is only
stored in the safe register which is never leaked.
While the idea is isolation, this mitigation still stays
probabilistic to some extend.

The original return address is safed to the shad‐
ow stack in the prolog and retrieved from there in
the epilog. The shadow stack pointer in the safe reg‐
ister is updated but one could also do a calculation
based on the current RSP and skip the update. This
would also solve the problem that strict LIFO se‐
mantics break some higher compiler optimization
levels. Currently the return address on the stack is
compared with the shadow stack copy, a mismatch
lets the program abort. One could also decide to
overwrite the original return address to hide a code
pointer. Attack detection can still be done by ob‐
serving changes in the overwritten value which
could be just zeros or the RSP. Access to two memo‐
ry regions is expected to have a performance impact
but therefore a shadow stack is not vulnerable to the
described known-plaintext and replay attacks.

4.4 IN-KERNEL SHADOW STACK

Unlike the userspace stack, our in-kernel shadow
stack is based on strong isolation and can distrust
the integrity of all process memory. The downside
is a system call are needed at function entry and ex‐
it, such a context switch hurts the runtime in many
ways.

Instead of accuiring a mmaped region, each
thread now gets its own in-kernel data structure.
We selected the message queue of the System V IPC
primitives. Access is restricted to the current user
privilige when the queue is set up. The queue iden‐
tifier is kept in the safe register in order to protect it
from corruption, so that redirection to a attacker
controlled queue with permission 666 is not possi‐
ble.

We had to abuse the message type to turn the
FIFO semantics of the queue into LIFO by using the
current RSP as message type. On retrieval the kernel
needs to search through the queue which results in
O(n) complexity depending on the number of call
frames. The strict LIFO semantics could be loosened
by clearing all elements of the same message type
before a message is stored.

Currently forks do use the same queue because
only new threads are detected. The mentioned
problems can all be solved with a custom kernel
module that needs no queue identifier by using the
PID to offer a separate hashmap for each thread as
storage for the return address. We did not look at
the possibility to use eBPF for that purpose.

4.5 HMAC POINTER AUTHENTIFICATION

To protect against key leakage through XOR with a
known return address we first looked into signature
algorithms. The duality of RSA keys allows to ‘en‐
crypt’ a message with the private key instead of the
public key, so that if ‘decrypting’ it with the public
key is possible the message is restored and its au‐
thenticity proven. Besides RSA there are other
schemes with such a double property of authentifi‐
cation and content hiding; the Nyberg-Rueppel sig‐
nature, Niederreiter encryption scheme and sign‐
cryption. We did not investigate these options and
the performance they would offer – maybe there is
some hidden gem but mostly it did not look promis‐
ing compared with the HMAC approach that CCFI
and Qualcomm Pointer Authentification took.

We decided to start with a simple HMAC algo‐
rithm to see how the rest of the instrumentation
would look like. The HMAC could be stored some‐
where else but we did not want to introduce a

change in the memory layout of the function. Like
Qualcomm we use the static bits of the address to
store the HMAC. We take the highest 17 bit which
because they are always zero for userspace address‐
es.

We based our first prototype HMAC on a (al‐
leged) RC4 stream cipher. The initialization code
sets up a secret key in the x87 register with random
data from the kernel. At function entry a new
HMAC is calculated as hmac(key, RSP, return addr.).
The values are concatenated as 192 bit input to the
RC4 generator and by taking three bytes of its out‐
put we get the 17 bit HMAC. The RC4 code was
written in C and compiled to assembly for further
modification. Controlling the register usage was
easier with a custom calling convention for this
helper function.

At the function epilog the HMAC and return ad‐
dress are separated again and a new HMAC is cal‐
culated on the basis of the found return address. If
both HMACs differ, execution is aborted.

The alleged RC4 algorithm runs two loops with
256 iterations which involve memory operations.
The runtime is hurt too bad for practical usage.
Qualcomm uses the QARMA cipher, CCFI uses
AES-NI to generate the HMAC which also involves
a lot of instructions but less memory accesses. Yet in
our case we would need to backup all xmm registers
since we want to stay compatible. Still this is the
most promising approach for current hardware. The
newest hardware could use Intel’s SHA ISA exten‐
sion for 17 bit trimmed hash of the secret key, return
address and RSP. Of the many other secure hash
functions we could use instead, BLAKE2 offers
good benchmarking results. While a 17 bit hash
does not sound much one has to keep in mind that
the whole input is 192 bit. The attacker can control
the return address but does not know the secret key
in order to find a collision. Yet, the attacker can iter‐
ate the possible 64 bit keys and hope that if the
same HMAC is found this is not due to a collision
but a correct key – truncating the hash also has pos‐
itive effects.

In the first prototype with RC4 we decided to
leave the return address leakable, however since the
key just occupies one of the x87 registers we could
easily introduce a second key that is used for an ad‐
ditional XOR to hide the return address. This also
introduces more unknown bits for the attacker in
the HMAC.

Therefore we implemented our last variant with a
fast non-cryptographic hash function [13] and the
additional XOR. Under the assumption that a strong

cryptoanalysis is unlikely this is our most promising
approach.

Replay attacks are still possible but including the
RSP into the hash limits them to the same position
on the stack. Introducing a per-function constant in
the hash would further narrow this down to return
only to legitimate call sites of the current function
observed at this position in the stack. The practica‐
bility of replay attacks has not been studied, but it
might be possible the same way CFI is vulnerable
where a class of pointers has to be allowed because
exact knowlege is not available at compile time.

5. EVALUATION
Both shadow stacks and pointer authentification are
strong mitigation techniques that offer integrity for
return addresses. Based on examples we will
demonstrate the security and performance proper‐
ties of the approaches.

5.1 SECURITY

The threat model included leakage of the stack con‐
tents before the return address is overwritten. We
simulate this setting with a HTTP2-like service that
processes serveral requests in the same connection.
The client communication is handled in a new
thread. We chose a format string vulnerability be‐
cause it first leaks registers and then the stack for
higher arguments. A client requests files by specif‐
ing their names and the format string vulnerability
occurs when the server uses these filenames in its
answer. The answer is always that there is no such
file. Instead of having to use the format string attack
when overwriting the return address we included a
simple write primitive for brevity; it is available
when the client requests the file “a” and then ad‐
dress and content can be entered.

The program leaks the buffer pointer to the un‐
safe stack from a register, and from the stack a
pointer to a static string in the binary, the RBP and
the return address. It also leaks stdin which could
be used to get the address of system() but instead
of needing ROP to set up the argument we included
the function success that starts a shell, so that a
simple code pointer offset is enough to determine
the new return address. Here is a simple extract of
the vulnerable function:
char buf[70];
char response[100];
char *header = "Not found: ";
int len = strlen(header);
strncpy(response, header, len);
fprintf(out,
"Request filename (empty to end):\nGET ");
while (fgets(&buf[0], 70, stream) != NULL

 && buf[0]!='\n') {
 snprintf(response+len, 70, buf);
 fwrite(response, 1, strlen(response), out);
 // insert easy write primitive here
 fprintf(out, "\nGET ");
}

An exploit can either use the unsafe stack pointer or
the RBP to calculate the RSP value when the func‐
tion returns because both have a constant offset. Ex‐
ploiting RETGUARD is straightforward though
XOR of the found return address with the RSP, ap‐
plying the offset to the new target function and a fi‐
nal XOR with the RSP to gain a valid content to
overwrite the return address.

Our simple XOR protection pass can also be ex‐
ploited through the known-plaintext attack. Even
though the return address is XORed with a secret,
we can calculate the expected return address
though the leaked static string pointer, and in re‐
verse then even get the key through a XOR. This al‐
lows us to XOR the malicious target address with
the key and use it to overwrite the return address.

The two shadow stacks and the RC4 or fast hash
HMAC authentification can not be exploited be‐
cause of strong isolation for the kernel shadow
stack, for the userspace shadow stack because of the
missing knowlege about the pointer which is kept in
a safe register, and for the HMAC protection be‐
cause of the missing knowlege of the key for the
HMAC algorithm.

We provide the vulnerable program in exam‐
ples/vuln.c and an automated exploit in exam‐
ples/vuln-exploit.

5.2 PERFORMANCE

We measured the runtime of common programs to
get an impression of the performance impact of the
presented solutions. Microbencharks of the dura‐
tion of prolog and epilog would also be possible in
order to be independent from the number of call/
return pairs in the programs. In literature the run‐
time increasement for shadow stacks varies a lot
from 5% to 30% or even 50% but all these numbers
have to be taken with a grain of salt [4]. We did no
finetuning for our prototypes.

The simple XOR secret does not meet out security
requirements but is almost as fast as RETGUARD or
no additional protection – the varying runtime jitter
is more significant than the slowdown. Out of our
secure solutions the userspace shadow stack offers
the best performance with a runtime of factor 3–25.
The in-kernel shadow stack resulted in a runtime of
factor 4–40. Our RC4-based HMAC turned out to be

very slow with a runtime of factor 38–190. The fast
HMAC with code pointer hiding has a runtime fac‐
tor between 1.2 and 2.3.

The programs were compiled without higher op‐
timization. The input to bzip2 and gzip was the Cal‐
gary corpus, for oggenc we used a test input of the
Opus codec website. The input for GCC was a large
C file generated with benchmark/input/genc.

5.3 FUTURE WORK

The chosen general hash function has to be evaluat‐
ed in terms of cryptoanalysis or be replaced with a
lightweight secure hash function; the main goal is
that the 64 bit key as unknown part of the algorithm
input is not computable from observing the 17 bit
truncated hash output. Also there are not many ma‐
licious target addresses for collisions.

We could also use the AES-NI instructions to
compute an HMAC and see if this is faster than the
userspace shadow stack. Due to ABI compability
this will likely be slower than CCFI is able to keep
all the xmm registers set up. We did not have hard‐
ware to test Intel’s SHA instructions for HMAC cal‐
culation.

Replay attacks could be further made difficult by
introducing a per-function constant into the HMAC.

Currently we instrument every function but it
would be possible to adapt the stack-protector-
strong behavior of GCC to reduce function cover‐
age to those which are in need of protection.

Rerandomization of the key for young stack
frames could be implemented because more than
the half of the x87 registers are still free to backup
the key for old stack frames. This is particuarly use‐
ful for forked processes if the simple XOR secret
pass is used.

All passes should be implemented as LLVM tar‐
get machine pass or GCC plugin to improve compa‐
bility with build scripts and compiler optimizations,

as well as compile time compared to our assembly
text replacement.

The userspace shadow stack needs to be further
optimized. The kernel shadow stack is an interest‐
ing idea and could also be optimized or even gener‐
alized for secure information storage of other kinds
than return addresses.

6. CONCLUSION
We presented attacks to SafeStack and RETGUARD
and developed strong return address protection
based on safe registers and shadow stacks or crypto‐
graphic authentification. The acceptable tradeoff de‐
pends on the application in question, but currently
the fast HMAC is the recommended solution or the
userspace shadow stack if one does fear a strong
cryptoanalysis. The XOR secret pass offers weaker
protection than our slower solutions but improves
on the security of RETGUARD and SafeStack with
minimal performance impact.

The availability of Intel’s CET and Qualcomm’s
Pointer Authentification will likely obsolete our
software solutions if implemented carefully. But
even then there will be systems without these hard‐
ware features.

REFERENCES
[1] Nicolas Carlini, Antonio Barresi, Mathias Payer,

David Wagner, and Thomas R. Gross. 2015. Con‐
trol-flow Bending: On the Effectiveness of Con‐
trol-flow Integrity. In Proceedings of the 24th
USENIX Conference on Security Symposium
(SEC’15), 161–176. Retrieved from http://

dl.acm.org/citation.cfm?id=2831143.2831154

[2] Crispin Cowan, Steve Beattie, John Johansen,
and Perry Wagle. 2003. PointguardTM: Protect‐
ing Pointers from Buffer Overflow Vulnerabili‐
ties. In Proceedings of the 12th Conference on
USENIX Security Symposium - Volume 12
(SSYM’03), 7–7. Retrieved from http://dl.acm.org/

citation.cfm?id=1251353.1251360

[3] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hintony, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. 1998. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-overflow At‐
tacks. In Proceedings of the 7th Conference on
USENIX Security Symposium - Volume 7
(SSYM’98), 5–5. Retrieved from http://dl.acm.org/

citation.cfm?id=1267549.1267554

[4] Thurston H.Y. Dang, Petros Maniatis, and David
Wagner. 2015. The Performance Cost of Shadow
Stacks and Stack Canaries. In Proceedings of the

http://dl.acm.org/citation.cfm?id=2831143.2831154
http://dl.acm.org/citation.cfm?id=2831143.2831154
http://dl.acm.org/citation.cfm?id=1251353.1251360
http://dl.acm.org/citation.cfm?id=1251353.1251360
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dl.acm.org/citation.cfm?id=1267549.1267554

10th ACM Symposium on Information, Computer
and Communications Security (ASIA ccs ’15), 555–
566. DOI:https://doi.org/

10.1145/2714576.2714635

[5] FlowerCode DannyWei Iywang. 2016. Return
Flow Guard. Retrieved from http://xlab.tencent.‐

com/en/2016/11/02/return-flow-guard/

[6] Clang 6 Documentation. 2017. SafeStack. Re‐
trieved from https://clang.llvm.org/docs/SafeS‐

tack.html

[7] Clang 6 Documentation. 2017. Control Flow In‐
tegrity. Retrieved from https://clang.llvm.org/doc‐

s/ControlFlowIntegrity.html

[8] Clang CFI Design Documentation. 2017. Back‐
ward-edge CFI for return statements (RCFI). Re‐
trieved from https://clang.llvm.org/docs/Con‐

trolFlowIntegrityDesign.html

[9] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulzi‐
ibayar Otgonbaatar, Tiffany Tang, Howard
Shrobe, Stelios Sidiroglou-Douskos, Martin Ri‐
nard, and Hamed Okhravi. 2015. Missing the
Point(Er): On the Effectiveness of Code Pointer
Integrity. In Proceedings of the 2015 IEEE Sympo‐
sium on Security and Privacy (SP ’15), 781–796.
DOI:https://doi.org/10.1109/SP.2015.53

[10] Mike Frantzen and Mike Shuey. 2001. Stack‐
Ghost: Hardware facilitated stack protection. In
Proceedings of the 10th Conference on USENIX Se‐
curity Symposium - Volume 10 (SSYM’01). Re‐
trieved from http://dl.acm.org/citation.cfm?

id=1251327.1251332

[11] Enes Göktaş, Robert Gawlik, Benjamin Kollen‐
da, Elias Athanasopoulos, Georgios Portoka‐
lidis, Cristiano Giuffrida, and Herbert Bos.
2016. Undermining Information Hiding (and
What to Do about It). In 25th USENIX Security

Symposium (USENIX Security 16), 105–119. Re‐
trieved from https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presenta‐

tion/goktas

[12] grsecurity PaX Team. 2015. RAP: RIP ROP. Re‐
trieved from https://pax.grsecurity.net/docs/PaX‐

Team-H2HC15-RAP-RIP-ROP.pdf

[13] Lockless Inc. 2017. Fast Hash Function. Re‐
trieved from https://locklessinc.com/articles/

fast_hash/

[14] Intel. 2017. Control-flow Enforcement Technolo‐
gy Preview Rev. 2. Retrieved from https://soft‐

ware.intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf

[15] Eyal Itkin. 2017. Bypassing Return Flow Guard.
Retrieved from https://eyalitkin.wordpress.com/

2017/08/18/bypassing-return-flow-guard-rfg/

[16] Volodymyr Kuznetsov, László Szekeres, Math‐
ias Payer, George Candea, R. Sekar, and Dawn
Song. 2014. Code-pointer Integrity. In Proceed‐
ings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14),
147–163. Retrieved from http://dl.acm.org/cita‐

tion.cfm?id=2685048.2685061

[17] Ali José Mashtizadeh, Andrea Bittau, David
Mazières, and Dan Boneh. 2014. Cryptographi‐
cally Enforced Control Flow Integrity. CoRR ab‐
s/1408.1451, (2014). Retrieved from http://arx‐

iv.org/abs/1408.1451

[18] Qualcomm. 2017. Pointer Authentication on
ARMv8.3. Retrieved from https://www.qualcom‐

m.com/media/documents/files/whitepaper-point‐

er-authentication-on-armv8-3.pdf

[19] Theo de Raadt. 2017. RETGUARD. Retrieved
from https://lwn.net/Articles/732202/

https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/2714576.2714635
http://xlab.tencent.com/en/2016/11/02/return-flow-guard/
http://xlab.tencent.com/en/2016/11/02/return-flow-guard/
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://doi.org/10.1109/SP.2015.53
http://dl.acm.org/citation.cfm?id=1251327.1251332
http://dl.acm.org/citation.cfm?id=1251327.1251332
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/goktas
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/goktas
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/goktas
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://locklessinc.com/articles/fast_hash/
https://locklessinc.com/articles/fast_hash/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://eyalitkin.wordpress.com/2017/08/18/bypassing-return-flow-guard-rfg/
https://eyalitkin.wordpress.com/2017/08/18/bypassing-return-flow-guard-rfg/
http://dl.acm.org/citation.cfm?id=2685048.2685061
http://dl.acm.org/citation.cfm?id=2685048.2685061
http://arxiv.org/abs/1408.1451
http://arxiv.org/abs/1408.1451
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://lwn.net/Articles/732202/

	IS561 Project Report ParisDakarTech: Backward-edge Protection: Improvements on SafeStack and RETGUARD
	ABSTRACT
	1. INTRODUCTION
	2. SAFESTACK AND RETGUARD
	3. PROJECT THREAT MODEL AND REQUIREMENTS
	4. PROJECT PLAN AND RESULT
	4.1 INSTRUMENTATION FRAMEWORK
	4.2 SIMPLE XOR PROTECTION
	4.3 SHADOW STACK
	4.4 IN-KERNEL SHADOW STACK
	4.5 HMAC POINTER AUTHENTIFICATION

	5. EVALUATION
	5.1 SECURITY
	5.2 PERFORMANCE
	5.3 FUTURE WORK

	6. CONCLUSION
	REFERENCES

